手速还是慢了点,小细节bug没注意到浪费了一点时间
题意:找出n以内最大的k使得k%x==y |
思路:贪心地找靠近n的解,先看看n % x余数是否大于等于y,是的话就用(n/x)*x,不是的话就往前一位(n/x-1)*x。
AC代码:
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#define FAST ios::sync_with_stdio(false)
#define abs(a) ((a)>=0?(a):-(a))
#define sz(x) ((int)(x).size())
#define all(x) (x).begin(),(x).end()
#define mem(a,b) memset(a,b,sizeof(a))
#define max(a,b) ((a)>(b)?(a):(b))
#define min(a,b) ((a)<(b)?(a):(b))
#define rep(i,a,n) for(int i=a;i<=n;++i)
#define per(i,n,a) for(int i=n;i>=a;--i)
#define pb push_back
#define mp make_pair
#define fi first
#define se second
using namespace std;
typedef long long ll;
typedef pair<ll,ll> PII;
const int maxn = 1e6+200;
const int inf=0x3f3f3f3f;
const double eps = 1e-7;
const double pi=acos(-1.0);
const int mod = 1e9+7;
inline int lowbit(int x){
return x&(-x);}
ll gcd(ll a,ll b){
return b?gcd(b,a%b):a;}
void ex_gcd(ll a,ll b,ll &d,ll &x,ll &y){
if(!b){
d=a,x=1,y=0;}else{
ex_gcd(b,a%b,d,y,x);y-=x*(a/b);}}//x=(x%(b/d)+(b/d))%(b/d);
inline ll qpow(ll a,ll b,ll MOD=mod){
ll res=1;a%=MOD;while(b>0){
if(b&1)res=res*a%MOD;a=a*a%MOD;b>>=1;}return res;}
inline ll inv(ll x,ll p){
return qpow(x,p-2,p);}
inline ll Jos(ll n,ll k,ll s=1){
ll res=0;rep(i,1,n+1) res=(res+k)%i;return (res+s)%n;}
inline ll read(){
ll f = 1; ll x = 0;char ch = getchar();while(ch>'9'||ch<'0') {
if(ch=='-') f=-1; ch = getchar();}while(ch>='0'&&ch<='9') x = (x<<3) + (x<<1) + ch - '0', ch = getchar();return x*f; }
int dir[4][2] = {
{
1,0}, {
-1,0},{
0,1},{
0,-1} };
int main()
{
ll kase;
cin>>kase;
ll x, y , n;
while(kase--)
{
cin>>x>>y>>n;
ll cur = n / x;
ll m = n % x;
ll ans;
if(m>=y) ans = cur*x + y;
else ans = (cur-1)*x + y;
cout<<ans<<'\n';
}
return 0;
}
题意:每步要么乘2要么除6(模0的话),求n->1的最小步数 |
思路:先考虑怎么样的数才可能有解,因为我最后的1肯定是除6得到的(本身1除外),那最后一步就一定要是6的倍数,换句话说,能凑得到6的倍数的才能到1,而我又有个2可以乘,那质因子里面只有3和2就有可能。那就先将数分解求出3和2的个数。然后先把已有的2用3消掉(除6),再用3乘2凑6 。
AC代码:
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#define FAST ios::sync_with_stdio(false)
#define abs(a) ((a)>=0?(a):-(a))
#define sz(x) ((int)(x).size())
#define all(x) (x).begin(),(x).end()
#define mem(a,b) memset(a,b,sizeof(a))
#define max(a,b) ((a)>(b)?(a):(b))
#define min(a,b) ((a)<(b)?(a):(b))
#define rep(i,a,n) for(int i=a;i<=n;++i)
#define per(i,n,a) for(int i=n;i>=a;--i)
#define pb push_back
#define mp make_pair
#define fi first
#define se second
using namespace std;
typedef long long ll;
typedef pair<ll,ll> PII;
const int maxn = 1e6+200;
const int inf=0x3f3f3f3f;
const double eps = 1e-7;
const double pi=acos(-1.0);
const int mod = 1e9+7;
inline int lowbit(int x){
return x&(-x);}
ll gcd(ll a,ll b){
return b?gcd(b,a%b):a;}
void ex_gcd(ll a,ll b,ll &d,ll &x,ll &y){
if(!b){
d=a,x=1,y=0;}else{
ex_gcd(b,a%b,d,y,x);y-=x*(a/b);}}//x=(x%(b/d)+(b/d))%(b/d);
inline ll qpow(ll a,ll b,ll MOD=mod){
ll res=1;a%=MOD;while(b>0){
if(b&1)res=res*a%MOD;a=a*a%MOD;b>>=1;}return res;}
inline ll inv(ll x,ll p){
return qpow(x,p-2,p);}
inline ll Jos(ll n,ll k,ll s=1){
ll res=0;rep(i,1,n+1) res=(res+k)%i;return (res+s)%n;}
inline ll read(){
ll f = 1; ll x = 0;char ch = getchar();while(ch>'9'||ch<'0') {
if(ch=='-') f=-1; ch = getchar();}while(ch>='0'&&ch<='9') x = (x<<3) + (x<<1) + ch - '0', ch = getchar();return x*f; }
int dir[4][2] = {
{
1,0}, {
-1,0},{
0,1},{
0,-1} };
ll Map[10];
int main()
{
int kase;
cin>>kase;
while(kase--)
{
ll n; mem(Map,0);
n = read();
if(n==1)
{
cout<<0<<'\n';
continue;
}
while(n%2==0)
Map[2]++, n/=2;
while(n%3==0) Map[3]++, n/=3;
if(n==2) Map[2]++, n = 1; if(n==3) Map[3]++, n = 1;
if(n!=1)
cout<<-1<<'\n';
else
{
if(Map[2]>Map[3])
cout<<-1<<'\n';
else
{
ll ans = 0;
ans += Map[2];
Map[3] -= Map[2];
ans += Map[3] *2;
cout<<ans<<'\n';
}
}
}
return 0;
}
题意:左右括号串,问最少操作(把一个字符丢到头或者尾)是的括号匹配 |
这题放C题就很水了。用栈模拟一下,左括号不用管进栈,右括号发现不匹配就丢到后面去就好了。
AC代码:
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#define FAST ios::sync_with_stdio(false)
#define abs(a) ((a)>=0?(a):-(a))
#define sz(x) ((int)(x).size())
#define all(x) (x).begin(),(x).end()
#define mem(a,b) memset(a,b,sizeof(a))
#define max(a,b) ((a)>(b)?(a):(b))
#define min(a,b) ((a)<(b)?(a):(b))
#define rep(i,a,n) for(int i=a;i<=n;++i)
#define per(i,n,a) for(int i=n;i>=a;--i)
#define pb push_back
#define mp make_pair
#define fi first
#define se second
using namespace std;
typedef long long ll;
typedef pair<ll,ll> PII;
const int maxn = 1e6+200;
const int inf=0x3f3f3f3f;
const double eps = 1e-7;
const double pi=acos(-1.0);
const int mod = 1e9+7;
inline int lowbit(int x){
return x&(-x);}
ll gcd(ll a,ll b){
return b?gcd(b,a%b):a;}
void ex_gcd(ll a,ll b,ll &d,ll &x,ll &y){
if(!b){
d=a,x=1,y=0;}else{
ex_gcd(b,a%b,d,y,x);y-=x*(a/b);}}//x=(x%(b/d)+(b/d))%(b/d);
inline ll qpow(ll a,ll b,ll MOD=mod){
ll res=1;a%=MOD;while(b>0){
if(b&1)res=res*a%MOD;a=a*a%MOD;b>>=1;}return res;}
inline ll inv(ll x,ll p){
return qpow(x,p-2,p);}
inline ll Jos(ll n,ll k,ll s=1){
ll res=0;rep(i,1,n+1) res=(res+k)%i;return (res+s)%n;}
inline ll read(){
ll f = 1; ll x = 0;char ch = getchar();while(ch>'9'||ch<'0') {
if(ch=='-') f=-1; ch = getchar();}while(ch>='0'&&ch<='9') x = (x<<3) + (x<<1) + ch - '0', ch = getchar();return x*f; }
int dir[4][2] = {
{
1,0}, {
-1,0},{
0,1},{
0,-1} };
int main()
{
ll kase;
cin>>kase;
while(kase--)
{
ll n; string s; n = read();
cin>>s;
stack<char> s1;
ll ans = 0;
for(int i=0;i<s.size();i++)
{
if(s[i]=='(')
{
s1.push(s[i]);
}
else if(s[i]==')')
{
if(s1.size()==0)
{
ans++;
s += s[i];
}
else s1.pop();
}
}
cout<<ans<<'\n';
}
return 0;
}
题意:每步同时a[i]+x,x+1,或者只x+1,问最少多少步可以使得序列模k为0 |
思维题,直观看不太好判断。思路:
1.先将a[i]转化成模完k之后的,现在要把a[i]凑到k。
2.因为x也在变,不好直接给a[i]大的。观察每次x操作完一个a[i],x就会变成k- a[i] +1 (如对 2 凑到4, x=2时加进去后,x++到3)。这个结果是唯一确定的。
3.那我们就相当于知道了x在处理完n个数后变成了什么了。这里面就会有周期产生了。比如第一个样例1 1 2 模 3, x的处理完后状态分别是 3 3 2,因为我x是单增的,所以出现相同数的时候肯定就是走了一个周期。这个时候我们就看最大周期以及最后跑到的那个数就行了,比如这里跑了一个周期,外加多跑了3次,3*1+3=6。
AC代码:
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#define FAST ios::sync_with_stdio(false)
#define abs(a) ((a)>=0?(a):-(a))
#define sz(x) ((int)(x).size())
#define all(x) (x).begin(),(x).end()
#define mem(a,b) memset(a,b,sizeof(a))
#define max(a,b) ((a)>(b)?(a):(b))
#define min(a,b) ((a)<(b)?(a):(b))
#define rep(i,a,n) for(int i=a;i<=n;++i)
#define per(i,n,a) for(int i=n;i>=a;--i)
#define pb push_back
#define mp make_pair
#define fi first
#define se second
using namespace std;
typedef long long ll;
typedef pair<ll,ll> PII;
const int maxn = 2e5+200;
const int inf=0x3f3f3f3f;
const double eps = 1e-7;
const double pi=acos(-1.0);
const int mod = 1e9+7;
inline int lowbit(int x){
return x&(-x);}
ll gcd(ll a,ll b){
return b?gcd(b,a%b):a;}
void ex_gcd(ll a,ll b,ll &d,ll &x,ll &y){
if(!b){
d=a,x=1,y=0;}else{
ex_gcd(b,a%b,d,y,x);y-=x*(a/b);}}//x=(x%(b/d)+(b/d))%(b/d);
inline ll qpow(ll a,ll b,ll MOD=mod){
ll res=1;a%=MOD;while(b>0){
if(b&1)res=res*a%MOD;a=a*a%MOD;b>>=1;}return res;}
inline ll inv(ll x,ll p){
return qpow(x,p-2,p);}
inline ll Jos(ll n,ll k,ll s=1){
ll res=0;rep(i,1,n+1) res=(res+k)%i;return (res+s)%n;}
inline ll read(){
ll f = 1; ll x = 0;char ch = getchar();while(ch>'9'||ch<'0') {
if(ch=='-') f=-1; ch = getchar();}while(ch>='0'&&ch<='9') x = (x<<3) + (x<<1) + ch - '0', ch = getchar();return x*f; }
int dir[4][2] = {
{
1,0}, {
-1,0},{
0,1},{
0,-1} };
ll a[maxn];
ll b[maxn];
map<ll,ll> Map;
int main()
{
ll kase;
kase = read();
while(kase--)
{
ll n, k; ll cnt = 0; Map.clear();
n = read(), k = read();
rep(i,1,n)
{
a[i] = read(), a[i] = a[i]%k;
if(a[i]==0) cnt++;
}
if(cnt==n)
{
cout<<0<<'\n';
continue;
}
ll pos = 0;
rep(i,1,n)
{
if(a[i]==0) continue;
else b[pos++] = (k- a[i] + 1);
}
ll ans = 0; ll res= -1;
ll idx;
rep(i,0,pos-1)
{
Map[b[i]] ++;
if(res<Map[b[i]]||res==Map[b[i]]&&idx<b[i])
{
res = Map[b[i]];
idx = b[i];
}
}
ans = (res-1)*k + idx;
cout<<ans<<'\n';
}
return 0;
}