功能:对图片边缘进行填充
transforms.Pad(padding, fill=0,
padding_mode='constant')
功能:调整亮度、对比度、饱和度和色相
transforms.ColorJitter(brightness=0,
contrast=0, saturation=0, hue=0)
功能:依概率将图片转换为灰度图
RandomGrayscale(num_output_channels, p=0.1)
Grayscale(num_output_channels)
功能:对图像进行仿射变换,仿射变换是二维 的线性变换,由五种基本原子变换构成,分别 是旋转、平移、缩放、错切和翻转
RandomAffine(degrees, translate=None,
scale=None, shear=None,
resample=False, fillcolor=0)
功能:对图像进行随机遮挡
功能:用户自定义lambda方法
transforms.Lambda(lambd)
transforms.TenCrop(200, vertical_flip=True),
transforms.Lambda(lambda crops: torch.stack([transforms.Totensor()(crop) for crop in crops])),
功能:从一系列transforms方法中随机挑选一个
transforms.RandomChoice([transforms1,
transforms2, transforms3])
功能:依据概率执行一组transforms操作
transforms.RandomApply([transforms1,
transforms2, transforms3], p=0.5)
功能:对一组transforms操作打乱顺序
transforms.RandomOrder([transforms1, transforms2, transforms3])
class Compose(object):
def __call__(self, img):
for t in self.transforms:
img = t(img)
return img
通过类实现多参数传入:
class YourTransforms(object):
def __init__(self, ...): ...
def __call__(self, img): ...
return img
class AddPepperNoise(object):
def __init__(self, snr, p):
self.snr = snr
self.p = p
def __call__(self, img):
```添加椒盐噪声具体实现过程 ```
return img
class Compose(object):
def __call__(self, img):
for t in self.transforms:
img = t(img) return img
原则:让训练集与测试集更接近
import os
import numpy as np
import torch
import random
from matplotlib import pyplot as plt
from torch.utils.data import DataLoader
import torchvision.transforms as transforms
from tools.my_dataset import RMBDataset
from tools.common_tools import transform_invert
def set_seed(seed=1):
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
set_seed(1) # 设置随机种子
# 参数设置
MAX_EPOCH = 10
BATCH_SIZE = 1
LR = 0.01
log_interval = 10
val_interval = 1
rmb_label = {
"1": 0, "100": 1}
# ============================ step 1/5 数据 ============================
split_dir = os.path.join("..", "..", "data", "rmb_split")
train_dir = os.path.join(split_dir, "train")
valid_dir = os.path.join(split_dir, "valid")
norm_mean = [0.485, 0.456, 0.406]
norm_std = [0.229, 0.224, 0.225]
train_transform = transforms.Compose([
transforms.Resize((224, 224)),
# 1 Pad
# transforms.Pad(padding=32, fill=(255, 0, 0), padding_mode='constant'),
# transforms.Pad(padding=(8, 64), fill=(255, 0, 0), padding_mode='constant'),
# transforms.Pad(padding=(8, 16, 32, 64), fill=(255, 0, 0), padding_mode='constant'),
# transforms.Pad(padding=(8, 16, 32, 64), fill=(255, 0, 0), padding_mode='symmetric'),
# 2 ColorJitter
# transforms.ColorJitter(brightness=0.5),
# transforms.ColorJitter(contrast=0.5),
# transforms.ColorJitter(saturation=0.5),
# transforms.ColorJitter(hue=0.3),
# 3 Grayscale
# transforms.Grayscale(num_output_channels=3),
# 4 Affine
# transforms.RandomAffine(degrees=30),
# transforms.RandomAffine(degrees=0, translate=(0.2, 0.2), fillcolor=(255, 0, 0)),
# transforms.RandomAffine(degrees=0, scale=(0.7, 0.7)),
# transforms.RandomAffine(degrees=0, shear=(0, 0, 0, 45)),
# transforms.RandomAffine(degrees=0, shear=90, fillcolor=(255, 0, 0)),
# 5 Erasing
# transforms.ToTensor(),
# transforms.RandomErasing(p=1, scale=(0.02, 0.33), ratio=(0.3, 3.3), value=(254/255, 0, 0)),
# transforms.RandomErasing(p=1, scale=(0.02, 0.33), ratio=(0.3, 3.3), value='1234'),
# 1 RandomChoice
# transforms.RandomChoice([transforms.RandomVerticalFlip(p=1), transforms.RandomHorizontalFlip(p=1)]),
# 2 RandomApply
# transforms.RandomApply([transforms.RandomAffine(degrees=0, shear=45, fillcolor=(255, 0, 0)),
# transforms.Grayscale(num_output_channels=3)], p=0.5),
# 3 RandomOrder
# transforms.RandomOrder([transforms.RandomRotation(15),
# transforms.Pad(padding=32),
# transforms.RandomAffine(degrees=0, translate=(0.01, 0.1), scale=(0.9, 1.1))]),
transforms.ToTensor(),
transforms.Normalize(norm_mean, norm_std),
])
valid_transform = transforms.Compose([
transforms.Resize((224, 224)),
transforms.ToTensor(),
transforms.Normalize(norm_mean, norm_std)
])
# 构建MyDataset实例
train_data = RMBDataset(data_dir=train_dir, transform=train_transform)
valid_data = RMBDataset(data_dir=valid_dir, transform=valid_transform)
# 构建DataLoder
train_loader = DataLoader(dataset=train_data, batch_size=BATCH_SIZE, shuffle=True)
valid_loader = DataLoader(dataset=valid_data, batch_size=BATCH_SIZE)
# ============================ step 5/5 训练 ============================
for epoch in range(MAX_EPOCH):
for i, data in enumerate(train_loader):
inputs, labels = data # B C H W
img_tensor = inputs[0, ...] # C H W
img = transform_invert(img_tensor, train_transform)
plt.imshow(img)
plt.show()
plt.pause(0.5)
plt.close()
import os
import numpy as np
import torch
import random
import torchvision.transforms as transforms
from PIL import Image
from matplotlib import pyplot as plt
from torch.utils.data import DataLoader
from tools.my_dataset import RMBDataset
from tools.common_tools import transform_invert
def set_seed(seed=1):
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
set_seed(1) # 设置随机种子
# 参数设置
MAX_EPOCH = 10
BATCH_SIZE = 1
LR = 0.01
log_interval = 10
val_interval = 1
rmb_label = {
"1": 0, "100": 1}
class AddPepperNoise(object):
"""增加椒盐噪声
Args:
snr (float): Signal Noise Rate
p (float): 概率值,依概率执行该操作
"""
def __init__(self, snr, p=0.9):
assert isinstance(snr, float) or (isinstance(p, float))
self.snr = snr
self.p = p
def __call__(self, img):
"""
Args:
img (PIL Image): PIL Image
Returns:
PIL Image: PIL image.
"""
if random.uniform(0, 1) < self.p:
img_ = np.array(img).copy()
h, w, c = img_.shape
signal_pct = self.snr
noise_pct = (1 - self.snr)
mask = np.random.choice((0, 1, 2), size=(h, w, 1), p=[signal_pct, noise_pct/2., noise_pct/2.])
mask = np.repeat(mask, c, axis=2)
img_[mask == 1] = 255 # 盐噪声
img_[mask == 2] = 0 # 椒噪声
return Image.fromarray(img_.astype('uint8')).convert('RGB')
else:
return img
# ============================ step 1/5 数据 ============================
split_dir = os.path.join("..", "..", "data", "rmb_split")
train_dir = os.path.join(split_dir, "train")
valid_dir = os.path.join(split_dir, "valid")
norm_mean = [0.485, 0.456, 0.406]
norm_std = [0.229, 0.224, 0.225]
train_transform = transforms.Compose([
transforms.Resize((224, 224)),
AddPepperNoise(0.9, p=0.5),
transforms.ToTensor(),
transforms.Normalize(norm_mean, norm_std),
])
valid_transform = transforms.Compose([
transforms.Resize((224, 224)),
transforms.ToTensor(),
transforms.Normalize(norm_mean, norm_std)
])
# 构建MyDataset实例
train_data = RMBDataset(data_dir=train_dir, transform=train_transform)
valid_data = RMBDataset(data_dir=valid_dir, transform=valid_transform)
# 构建DataLoder
train_loader = DataLoader(dataset=train_data, batch_size=BATCH_SIZE, shuffle=True)
valid_loader = DataLoader(dataset=valid_data, batch_size=BATCH_SIZE)
# ============================ step 5/5 训练 ============================
for epoch in range(MAX_EPOCH):
for i, data in enumerate(train_loader):
inputs, labels = data # B C H W
img_tensor = inputs[0, ...] # C H W
img = transform_invert(img_tensor, train_transform)
plt.imshow(img)
plt.show()
plt.pause(0.5)
plt.close()
import os
import random
import numpy as np
import torch
import torch.nn as nn
from torch.utils.data import DataLoader
import torchvision.transforms as transforms
import torch.optim as optim
from matplotlib import pyplot as plt
from model.lenet import LeNet
from tools.my_dataset import RMBDataset
from tools.common_tools import transform_invert
def set_seed(seed=1):
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
set_seed() # 设置随机种子
rmb_label = {
"1": 0, "100": 1}
# 参数设置
MAX_EPOCH = 10
BATCH_SIZE = 16
LR = 0.01
log_interval = 10
val_interval = 1
# ============================ step 1/5 数据 ============================
split_dir = os.path.join("..", "..", "data", "rmb_split")
train_dir = os.path.join(split_dir, "train")
valid_dir = os.path.join(split_dir, "valid")
norm_mean = [0.485, 0.456, 0.406]
norm_std = [0.229, 0.224, 0.225]
train_transform = transforms.Compose([
transforms.Resize((32, 32)),
transforms.RandomCrop(32, padding=4),
transforms.RandomGrayscale(p=0.9),
transforms.ToTensor(),
transforms.Normalize(norm_mean, norm_std),
])
valid_transform = transforms.Compose([
transforms.Resize((32, 32)),
transforms.ToTensor(),
transforms.Normalize(norm_mean, norm_std),
])
# 构建MyDataset实例
train_data = RMBDataset(data_dir=train_dir, transform=train_transform)
valid_data = RMBDataset(data_dir=valid_dir, transform=valid_transform)
# 构建DataLoder
train_loader = DataLoader(dataset=train_data, batch_size=BATCH_SIZE, shuffle=True)
valid_loader = DataLoader(dataset=valid_data, batch_size=BATCH_SIZE)
# ============================ step 2/5 模型 ============================
net = LeNet(classes=2)
net.initialize_weights()
# ============================ step 3/5 损失函数 ============================
criterion = nn.CrossEntropyLoss() # 选择损失函数
# ============================ step 4/5 优化器 ============================
optimizer = optim.SGD(net.parameters(), lr=LR, momentum=0.9) # 选择优化器
scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=10, gamma=0.1) # 设置学习率下降策略
# ============================ step 5/5 训练 ============================
train_curve = list()
valid_curve = list()
for epoch in range(MAX_EPOCH):
loss_mean = 0.
correct = 0.
total = 0.
net.train()
for i, data in enumerate(train_loader):
# forward
inputs, labels = data
outputs = net(inputs)
# backward
optimizer.zero_grad()
loss = criterion(outputs, labels)
loss.backward()
# update weights
optimizer.step()
# 统计分类情况
_, predicted = torch.max(outputs.data, 1)
total += labels.size(0)
correct += (predicted == labels).squeeze().sum().numpy()
# 打印训练信息
loss_mean += loss.item()
train_curve.append(loss.item())
if (i+1) % log_interval == 0:
loss_mean = loss_mean / log_interval
print("Training:Epoch[{:0>3}/{:0>3}] Iteration[{:0>3}/{:0>3}] Loss: {:.4f} Acc:{:.2%}".format(
epoch, MAX_EPOCH, i+1, len(train_loader), loss_mean, correct / total))
loss_mean = 0.
scheduler.step() # 更新学习率
# validate the model
if (epoch+1) % val_interval == 0:
correct_val = 0.
total_val = 0.
loss_val = 0.
net.eval()
with torch.no_grad():
for j, data in enumerate(valid_loader):
inputs, labels = data
outputs = net(inputs)
loss = criterion(outputs, labels)
_, predicted = torch.max(outputs.data, 1)
total_val += labels.size(0)
correct_val += (predicted == labels).squeeze().sum().numpy()
loss_val += loss.item()
valid_curve.append(loss_val)
print("Valid:\t Epoch[{:0>3}/{:0>3}] Iteration[{:0>3}/{:0>3}] Loss: {:.4f} Acc:{:.2%}".format(
epoch, MAX_EPOCH, j+1, len(valid_loader), loss_val, correct / total))
train_x = range(len(train_curve))
train_y = train_curve
train_iters = len(train_loader)
valid_x = np.arange(1, len(valid_curve)+1) * train_iters*val_interval # 由于valid中记录的是epochloss,需要对记录点进行转换到iterations
valid_y = valid_curve
plt.plot(train_x, train_y, label='Train')
plt.plot(valid_x, valid_y, label='Valid')
plt.legend(loc='upper right')
plt.ylabel('loss value')
plt.xlabel('Iteration')
plt.show()
# ============================ inference ============================
BASE_DIR = os.path.dirname(os.path.abspath(__file__))
test_dir = os.path.join(BASE_DIR, "test_data")
test_data = RMBDataset(data_dir=test_dir, transform=valid_transform)
valid_loader = DataLoader(dataset=test_data, batch_size=1)
for i, data in enumerate(valid_loader):
# forward
inputs, labels = data
outputs = net(inputs)
_, predicted = torch.max(outputs.data, 1)
rmb = 1 if predicted.numpy()[0] == 0 else 100
img_tensor = inputs[0, ...] # C H W
img = transform_invert(img_tensor, train_transform)
plt.imshow(img)
plt.title("LeNet got {} Yuan".format(rmb))
plt.show()
plt.pause(0.5)
plt.close()