Hadoop MapReduce WordCount程序编写


package rock.lee.wordcount;

import java.io.IOException;
import java.util.StringTokenizer;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;

public class MyWordCount {

	/**
	 * @author Rock Lee
	 * 
	 * @Description 
	 * LongWritable,输入
	 * key类型 Text, 
	 * 输入value类型 
	 * Text, 输出key类型
	 * IntWritable,输出vlaue类型
	 */
	static class MyMapper extends Mapper {
		private static final IntWritable ONE = new IntWritable(1);

		@Override
		protected void map(LongWritable key, Text value,
				Mapper.Context context)
				throws IOException, InterruptedException {

			//读取每行的数据
			String lineValue = value.toString();
			//对每行数据进行分割\r\n\t
			StringTokenizer stzer = new StringTokenizer(lineValue);
			Text text = new Text();
			while (stzer.hasMoreTokens()) {
				//获取分割后的每个值
				String val = stzer.nextToken();
				//key值
				text.set(val);
				//key-->value
				context.write(text, ONE);
			}
		}
	}
	
	/**
	 * 
	 * @author Rock Lee
	 *  
	 * @Description
	 */
	static class MyReduce extends Reducer {

		@Override
		protected void reduce(Text key, Iterable values,Reducer.Context context)
				throws IOException, InterruptedException {
			int sum = 0;
			for (IntWritable val : values) {
				sum+= val.get();
			}
			context.write(key, new IntWritable(sum));
		}
	}

	public static void main(String[] args) throws Exception {
		//获取配置信息
		Configuration configuration = new Configuration();
		
		//创建任务,设置名称
		Job job = new Job(configuration,"WC");
		
		//设置任务运行类
		job.setJarByClass(MyWordCount.class);
		
		//设置Mapper和Reducer类
		job.setMapperClass(MyMapper.class);
		job.setReducerClass(MyReduce.class);
		
		//设置输入/输出路径
		FileInputFormat.addInputPath(job, new Path(args[0]));
		FileOutputFormat.setOutputPath(job, new Path(args[1]));
		
		//设置输出结果key/value类型
		job.setOutputKeyClass(Text.class);
		job.setOutputValueClass(IntWritable.class);
		
		//提交任务,等待运行结果,并在客户端显示运行信息
		boolean success = job.waitForCompletion(true);
		System.exit(success?0:1);
		
	}
}



运行wc.jar

[root@centos data]# hadoop jar wc.jar /opt/wc/input/ /opt/wc/output
Warning: $HADOOP_HOME is deprecated.

15/06/11 04:29:10 WARN mapred.JobClient: Use GenericOptionsParser for parsing the arguments. Applications should implement Tool for the same.
15/06/11 04:29:10 INFO input.FileInputFormat: Total input paths to process : 2
15/06/11 04:29:10 INFO util.NativeCodeLoader: Loaded the native-hadoop library
15/06/11 04:29:10 WARN snappy.LoadSnappy: Snappy native library not loaded
15/06/11 04:29:10 INFO mapred.JobClient: Running job: job_201506110402_0006
15/06/11 04:29:11 INFO mapred.JobClient:  map 0% reduce 0%
15/06/11 04:29:32 INFO mapred.JobClient:  map 50% reduce 0%
15/06/11 04:29:42 INFO mapred.JobClient:  map 100% reduce 0%
15/06/11 04:30:05 INFO mapred.JobClient:  map 100% reduce 100%
15/06/11 04:30:05 INFO mapred.JobClient: Job complete: job_201506110402_0006
15/06/11 04:30:05 INFO mapred.JobClient: Counters: 29
15/06/11 04:30:05 INFO mapred.JobClient:   Job Counters
15/06/11 04:30:05 INFO mapred.JobClient:     Launched reduce tasks=1
15/06/11 04:30:05 INFO mapred.JobClient:     SLOTS_MILLIS_MAPS=40074
15/06/11 04:30:05 INFO mapred.JobClient:     Total time spent by all reduces waiting after reserving slots (ms)=0
15/06/11 04:30:05 INFO mapred.JobClient:     Total time spent by all maps waiting after reserving slots (ms)=0
15/06/11 04:30:05 INFO mapred.JobClient:     Launched map tasks=2
15/06/11 04:30:05 INFO mapred.JobClient:     Data-local map tasks=2
15/06/11 04:30:05 INFO mapred.JobClient:     SLOTS_MILLIS_REDUCES=21707
15/06/11 04:30:05 INFO mapred.JobClient:   File Output Format Counters
15/06/11 04:30:05 INFO mapred.JobClient:     Bytes Written=30
15/06/11 04:30:05 INFO mapred.JobClient:   FileSystemCounters
15/06/11 04:30:05 INFO mapred.JobClient:     FILE_BYTES_READ=96
15/06/11 04:30:05 INFO mapred.JobClient:     HDFS_BYTES_READ=260
15/06/11 04:30:05 INFO mapred.JobClient:     FILE_BYTES_WRITTEN=160215
15/06/11 04:30:05 INFO mapred.JobClient:     HDFS_BYTES_WRITTEN=30
15/06/11 04:30:05 INFO mapred.JobClient:   File Input Format Counters
15/06/11 04:30:05 INFO mapred.JobClient:     Bytes Read=44
15/06/11 04:30:05 INFO mapred.JobClient:   Map-Reduce Framework
15/06/11 04:30:05 INFO mapred.JobClient:     Map output materialized bytes=102
15/06/11 04:30:05 INFO mapred.JobClient:     Map input records=4
15/06/11 04:30:05 INFO mapred.JobClient:     Reduce shuffle bytes=102
15/06/11 04:30:05 INFO mapred.JobClient:     Spilled Records=16
15/06/11 04:30:05 INFO mapred.JobClient:     Map output bytes=74
15/06/11 04:30:05 INFO mapred.JobClient:     CPU time spent (ms)=820
15/06/11 04:30:05 INFO mapred.JobClient:     Total committed heap usage (bytes)=413466624
15/06/11 04:30:05 INFO mapred.JobClient:     Combine input records=0
15/06/11 04:30:05 INFO mapred.JobClient:     SPLIT_RAW_BYTES=216
15/06/11 04:30:05 INFO mapred.JobClient:     Reduce input records=8
15/06/11 04:30:05 INFO mapred.JobClient:     Reduce input groups=4
15/06/11 04:30:05 INFO mapred.JobClient:     Combine output records=0
15/06/11 04:30:05 INFO mapred.JobClient:     Physical memory (bytes) snapshot=313032704
15/06/11 04:30:05 INFO mapred.JobClient:     Reduce output records=4
15/06/11 04:30:05 INFO mapred.JobClient:     Virtual memory (bytes) snapshot=1127878656
15/06/11 04:30:05 INFO mapred.JobClient:     Map output records=8



转自: http://mvplee.iteye.com/blog/2218989

你可能感兴趣的:(Hadoop MapReduce WordCount程序编写)