关于Maven的使用就不再啰嗦了,网上很多,并且这么多年变化也不大,这里仅介绍怎么搭建Hadoop的开发环境。
1. 首先创建工程
mvn archetype:generate -DgroupId=my.hadoopstudy -DartifactId=hadoopstudy -DarchetypeArtifactId=maven-archetype-quickstart -DinteractiveMode=false
<project xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://maven.apache.org/POM/4.0.0" xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/maven-v4_0_0.xsd"> <modelVersion>4.0.0modelVersion> <groupId>my.hadoopstudygroupId> <artifactId>hadoopstudyartifactId> <packaging>jarpackaging> <version>1.0-SNAPSHOTversion> <name>hadoopstudyname> <url>http://maven.apache.orgurl> <dependencies> <dependency> <groupId>org.apache.hadoopgroupId> <artifactId>hadoop-commonartifactId> <version>2.5.1version> dependency> <dependency> <groupId>org.apache.hadoopgroupId> <artifactId>hadoop-hdfsartifactId> <version>2.5.1version> dependency> <dependency> <groupId>org.apache.hadoopgroupId> <artifactId>hadoop-clientartifactId> <version>2.5.1version> dependency> <dependency> <groupId>junitgroupId> <artifactId>junitartifactId> <version>3.8.1version> <scope>testscope> dependency> dependencies>project>
package my.hadoopstudy.dfs; import org.apache.hadoop.conf.Configuration;import org.apache.hadoop.fs.FSDataOutputStream;import org.apache.hadoop.fs.FileStatus;import org.apache.hadoop.fs.FileSystem;import org.apache.hadoop.fs.Path;import org.apache.hadoop.io.IOUtils; import java.io.InputStream;import java.net.URI; public class Test { public static void main(String[] args) throws Exception { String uri = "hdfs://9.111.254.189:9000/"; Configuration config = new Configuration(); FileSystem fs = FileSystem.get(URI.create(uri), config); // 列出hdfs上/user/fkong/目录下的所有文件和目录 FileStatus[] statuses = fs.listStatus(new Path("/user/fkong")); for (FileStatus status : statuses) { System.out.println(status); } // 在hdfs的/user/fkong目录下创建一个文件,并写入一行文本 FSDataOutputStream os = fs.create(new Path("/user/fkong/test.log")); os.write("Hello World!".getBytes()); os.flush(); os.close(); // 显示在hdfs的/user/fkong下指定文件的内容 InputStream is = fs.open(new Path("/user/fkong/test.log")); IOUtils.copyBytes(is, System.out, 1024, true); }}
package my.hadoopstudy.mapreduce; import org.apache.hadoop.conf.Configuration;import org.apache.hadoop.fs.Path;import org.apache.hadoop.io.IntWritable;import org.apache.hadoop.io.Text;import org.apache.hadoop.mapreduce.Job;import org.apache.hadoop.mapreduce.Mapper;import org.apache.hadoop.mapreduce.Reducer;import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;import org.apache.hadoop.util.GenericOptionsParser; import java.io.IOException; public class EventCount { public static class MyMapper extends Mapper<Object, Text, Text, IntWritable>{ private final static IntWritable one = new IntWritable(1); private Text event = new Text(); public void map(Object key, Text value, Context context) throws IOException, InterruptedException { int idx = value.toString().indexOf(" "); if (idx > 0) { String e = value.toString().substring(0, idx); event.set(e); context.write(event, one); } } } public static class MyReducer extends Reducer<Text,IntWritable,Text,IntWritable> { private IntWritable result = new IntWritable(); public void reduce(Text key, Iterable values, Context context) throws IOException, InterruptedException { int sum = 0; for (IntWritable val : values) { sum += val.get(); } result.set(sum); context.write(key, result); } } public static void main(String[] args) throws Exception { Configuration conf = new Configuration(); String[] otherArgs = new GenericOptionsParser(conf, args).getRemainingArgs(); if (otherArgs.length < 2) { System.err.println("Usage: EventCount " ); System.exit(2); } Job job = Job.getInstance(conf, "event count"); job.setJarByClass(EventCount.class); job.setMapperClass(MyMapper.class); job.setCombinerClass(MyReducer.class); job.setReducerClass(MyReducer.class); job.setOutputKeyClass(Text.class); job.setOutputValueClass(IntWritable.class); FileInputFormat.addInputPath(job, new Path(otherArgs[0])); FileOutputFormat.setOutputPath(job, new Path(otherArgs[1])); System.exit(job.waitForCompletion(true) ? 0 : 1); }}
运行“mvn package”命令产生jar包hadoopstudy-1.0-SNAPSHOT.jar,并将jar文件复制到hadoop安装目录下
这里假定我们需要分析几个日志文件中的Event信息来统计各种Event个数,所以创建一下目录和文件
/tmp/input/event.log.1/tmp/input/event.log.2/tmp/input/event.log.3
JOB_NEW ...JOB_NEW ...JOB_FINISH ...JOB_NEW ...JOB_FINISH ...
$ bin/hdfs dfs -put /tmp/input /user/fkong/input
$ bin/hadoop jar hadoopstudy-1.0-SNAPSHOT.jar my.hadoopstudy.mapreduce.EventCount /user/fkong/input /user/fkong/output
$ bin/hdfs dfs -cat /user/fkong/output/part-r-00000