6.命令行编译打包运行五个MapReduce程序

对于如何编译WordCount.java,对于0.20 等旧版本版本的做法很常见,具体如下:

javac -classpath /usr/local/hadoop/hadoop-1.0.1/hadoop-core-1.0.1.jar WordCount.java

但较新的 2.X 版本中,已经没有 hadoop-core*.jar 这个文件,因此编辑和打包自己的MapReduce程序与旧版本有所不同。

Hadoop 2.x 版本中的依赖 jar

Hadoop 2.x 版本中jar不再集中在一个 hadoop-core*.jar 中,而是分成多个 jar,如运行WordCount实例需要如下三个 jar:

  • $HADOOP_HOME/share/hadoop/common/hadoop-common-2.x.x.jar

  • $HADOOP_HOME/share/hadoop/mapreduce/hadoop-mapreduce-client-core-2.x.x.jar

  • $HADOOP_HOME/share/hadoop/common/lib/commons-cli-1.2.jar

例1.wordcount.java如下:

  1 import java.io.IOException; 
  2 import java.util.StringTokenizer;  
  3 import org.apache.hadoop.conf.Configuration;  
  4 import org.apache.hadoop.fs.Path;  
  5 import org.apache.hadoop.io.IntWritable;  
  6 import org.apache.hadoop.io.Text;  
  7 import org.apache.hadoop.mapred.JobConf;  
  8 import org.apache.hadoop.mapreduce.Job;  
  9 import org.apache.hadoop.mapreduce.Mapper; 
 10 import org.apache.hadoop.mapreduce.Reducer;  
 11 import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;  
 12 import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat; 
 13 import org.apache.hadoop.util.GenericOptionsParser; 
 14 public class WordCount {
 15 /**  
 16 * MapReduceBase类:实现了Mapper和Reducer接口的基类(其中的方法只是实现接口,而未作任何事情)  
 17 * Mapper接口:
 18 * WritableComparable接口:实现WritableComparable的类可以相互比较。所有被用作key的类应该实现此接口。  
 19     * Reporter 则可用于报告整个应用的运行进度,本例中未使用。   
 20     *   
 21     */    
 22  public static class TokenizerMapper   
 23       extends Mapper{  
 24      /**  
 25       * LongWritable, IntWritable, Text 均是 Hadoop 中实现的用于封装 Java 数据类型的类,这些类实现了WritableComparable接口,  
 26       * 都能够被串行化从而便于在分布式环境中进行数据交换,你可以将它们分别视为long,int,String 的替代品。  
 27       */   
 28    private final static IntWritable one = new IntWritable(1);  
 29    private Text word = new Text();//Text 实现了BinaryComparable类可以作为key值  
 30    /**  
 31     * Mapper接口中的map方法:  
 32     * void map(K1 key, V1 value, OutputCollector output, Reporter reporter)  
 33     * 映射一个单个的输入k/v对到一个中间的k/v对  
 34     * 输出对不需要和输入对是相同的类型,输入对可以映射到0个或多个输出对。  
 35     * OutputCollector接口:收集Mapper和Reducer输出的对。  
 36     * OutputCollector接口的collect(k, v)方法:增加一个(k,v)对到output  
 37     */    
 38      public void map(Object key, Text value, Context context) throws IOException, InterruptedException {  
 39        /** 
 40         * 原始数据: 
 41         * c++ java hello 
 42            world java hello 
 43            you me too 
 44            map阶段,数据如下形式作为map的输入值:key为偏移量 
 45            0  c++ java hello 
 46            16 world java hello 
 47            34 you me too 
 48             
 49         */  
 50         /** 
 51          * 以下解析键值对 
 52         * 解析后以键值对格式形成输出数据 
 53         * 格式如下:前者是键排好序的,后者数字是值 
 54         * c++ 1 
 55         * java 1 
 56         * hello 1 
 57         * world 1 
 58         * java 1 
 59         * hello 1 
 60         * you 1 
 61         * me 1 
 62         * too 1 
 63         * 这些数据作为reduce的输出数据 
 64         */  
 65      StringTokenizer itr = new StringTokenizer(value.toString());//得到什么值  
 66 //     System.out.println("value什么东西 : "+value.toString());  
 67 //     System.out.println("key什么东西 : "+key.toString());  
 68      while (itr.hasMoreTokens()) {  
 69        word.set(itr.nextToken());  
 70        context.write(word, one);  
 71      }  
 72        }  
 73    }
 74  public static class IntSumReducer extends Reducer {  
 75         private IntWritable result = new IntWritable();  
 76         /** 
 77          * reduce过程是对输入数据解析形成如下格式数据: 
 78          * (c++ [1]) 
 79          * (java [1,1]) 
 80          * (hello [1,1]) 
 81          * (world [1]) 
 82          * (you [1]) 
 83          * (me [1]) 
 84          * (you [1]) 
 85          * 供接下来的实现的reduce程序分析数据数据 
 86          *  
 87          */  
 88         public void reduce(Text key, Iterable values, Context context) throws IOException, InterruptedException {  
 89           int sum = 0;  
 90           /** 
 91            * 自己的实现的reduce方法分析输入数据 
 92            * 形成数据格式如下并存储 
 93            *     c++    1 
 94            *    hello   2 
 95            *    java    2 
 96            *    me      1 
 97            *    too     1 
 98            *    world   1 
 99            *    you     1 
100            *     
101            */  
102           for (IntWritable val : values) {  
103             sum += val.get();  
104           }  
105            
106           result.set(sum);  
107           context.write(key, result);  
108         }  
109       }  
110 public static void main(String[] args) throws Exception {
111     Configuration conf = new Configuration();
112     String[] otherArgs =new GenericOptionsParser(conf,args).getRemainingArgs();
113     if(otherArgs.length!=2){
114         System.err.println("Usage:wordcount ");
115         System.exit(2);
116     }
117     Job job= new Job (conf ,"word count");
118     job.setJarByClass(WordCount.class);  
119    job.setMapperClass(TokenizerMapper.class); //为job设置Mapper类   
120    job.setCombinerClass(IntSumReducer.class); //为job设置Combiner类    
121    job.setReducerClass(IntSumReducer.class); //为job设置Reduce类     
122    job.setOutputKeyClass(Text.class);        //设置输出key的类型  
123    job.setOutputValueClass(IntWritable.class);//  设置输出value的类型  
124    FileInputFormat.addInputPath(job, new Path(otherArgs[0])); //为map-reduce任务设置InputFormat实现类   设置输入路径  
125      
126    FileOutputFormat.setOutputPath(job, new Path(otherArgs[1]));//为map-reduce任务设置OutputFormat实现类  设置输出路径  
127    System.exit(job.waitForCompletion(true) ? 0 : 1);  
128  }  
129 }

以Hadoop2.2.0为例,编译wordcount的命令为(要先建一个WordCount文件夹):

root@master:/usr/local/hadoop/hadoop-2.2.0# javac -classpath share/hadoop/common/hadoop-common-2.2.0.jar:share/hadoop/mapreduce/hadoop-mapreduce-client-core-2.2.0.jar:share/hadoop/common/lib/commons-cli-1.2.jar -d WordCount WordCount.java

打包的命令为:

root@master:/usr/local/hadoop/hadoop-2.2.0# jar -cvf wordcount.jar -C WordCount .

打包后即可在hadoop上运行程序

root@master:/usr/local/hadoop/hadoop-2.2.0# hadoop jar wordcount.jar WordCount /input /output

 

例二.去重程序

样例输入如下所示:

     1)file1:

2012-3-1 a

2012-3-2 b

2012-3-3 c

2012-3-4 d

2012-3-5 a

2012-3-6 b

2012-3-7 c

2012-3-3 c

     2)file2:

2012-3-1 b

2012-3-2 a

2012-3-3 b

2012-3-4 d

2012-3-5 a

2012-3-6 c

2012-3-7 d

2012-3-3 c

     样例输出如下所示:

2012-3-1 a

2012-3-1 b

2012-3-2 a

2012-3-2 b

2012-3-3 b

2012-3-3 c

2012-3-4 d

2012-3-5 a

2012-3-6 b

2012-3-6 c

2012-3-7 c

2012-3-7 d

dedup.java代码如下:

  1 import java.io.IOException;
  2 
  3  
  4 
  5 import org.apache.hadoop.conf.Configuration;
  6 
  7 import org.apache.hadoop.fs.Path;
  8 
  9 import org.apache.hadoop.io.IntWritable;
 10 
 11 import org.apache.hadoop.io.Text;
 12 
 13 import org.apache.hadoop.mapreduce.Job;
 14 
 15 import org.apache.hadoop.mapreduce.Mapper;
 16 
 17 import org.apache.hadoop.mapreduce.Reducer;
 18 
 19 import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
 20 
 21 import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
 22 
 23 import org.apache.hadoop.util.GenericOptionsParser;
 24 
 25  
 26 
 27 public class dedup {
 28 
 29  
 30 
 31     //map将输入中的value复制到输出数据的key上,并直接输出
 32 
 33     public static class Map extends Mapper{
 34 
 35         private static Text line=new Text();//每行数据
 36 
 37        
 38 
 39         //实现map函数
 40 
 41         public void map(Object key,Text value,Context context)
 42 
 43                 throws IOException,InterruptedException{
 44 
 45             line=value;
 46 
 47             context.write(line, new Text(""));
 48 
 49         }
 50 
 51        
 52 
 53     }
 54 
 55    
 56 
 57     //reduce将输入中的key复制到输出数据的key上,并直接输出
 58 
 59     public static class Reduce extends Reducer{
 60 
 61         //实现reduce函数
 62 
 63         public void reduce(Text key,Iterable values,Context context)
 64 
 65                 throws IOException,InterruptedException{
 66 
 67             context.write(key, new Text(""));
 68 
 69         }
 70 
 71        
 72 
 73     }
 74 
 75    
 76 
 77     public static void main(String[] args) throws Exception{
 78 
 79         Configuration conf = new Configuration();
 80 
 81 
 82      String[] otherArgs = new GenericOptionsParser(conf, args).getRemainingArgs();
 83 
 84      if (otherArgs.length != 2) {
 85 
 86      System.err.println("Usage: Data Deduplication  ");
 87 
 88      System.exit(2);
 89 
 90      }
 91 
 92      
 93 
 94      Job job = new Job(conf, "Data Deduplication");
 95 
 96      job.setJarByClass(dedup.class);
 97 
 98      
 99 
100      //设置Map、Combine和Reduce处理类
101 
102      job.setMapperClass(Map.class);
103 
104      job.setCombinerClass(Reduce.class);
105 
106      job.setReducerClass(Reduce.class);
107 
108      
109 
110      //设置输出类型
111 
112      job.setOutputKeyClass(Text.class);
113 
114      job.setOutputValueClass(Text.class);
115 
116      
117 
118      //设置输入和输出目录
119 
120      FileInputFormat.addInputPath(job, new Path(otherArgs[0]));
121 
122      FileOutputFormat.setOutputPath(job, new Path(otherArgs[1]));
123 
124      System.exit(job.waitForCompletion(true) ? 0 : 1);
125 
126      }
127 
128 } 

编译过程:

root@master:/usr/local/hadoop/hadoop-2.2.0# javac -classpath share/hadoop/common/hadoop-common-2.2.0.jar:share/hadoop/mapreduce/hadoop-mapreduce-client-core-2.2.0.jar:share/hadoop/common/lib/commons-cli-1.2.jar -d dedup dedup.java

打包:

root@master:/usr/local/hadoop/hadoop-2.2.0# jar -cvf dedup.jar -C dedup . 

运行:

root@master:/usr/local/hadoop/hadoop-2.2.0# hadoop jar dedup.jar dedup /input/dedup /output/dedup


也可在eclipse上运行这个程序,代码稍作改动即可。

  1 package quchong;
  2 
  3 import java.io.IOException;
  4 
  5 
  6 
  7 import org.apache.hadoop.conf.Configuration;
  8 
  9 import org.apache.hadoop.fs.Path;
 10 
 11 import org.apache.hadoop.io.IntWritable;
 12 
 13 import org.apache.hadoop.io.Text;
 14 
 15 import org.apache.hadoop.mapreduce.Job;
 16 
 17 import org.apache.hadoop.mapreduce.Mapper;
 18 
 19 import org.apache.hadoop.mapreduce.Reducer;
 20 
 21 import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
 22 
 23 import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
 24 
 25 import org.apache.hadoop.util.GenericOptionsParser;
 26 
 27  
 28 
 29 public class dedup {
 30 
 31  
 32 
 33     //map将输入中的value复制到输出数据的key上,并直接输出
 34 
 35     public static class Map extends Mapper{
 36 
 37         private static Text line=new Text();//每行数据
 38 
 39        
 40 
 41         //实现map函数
 42 
 43         public void map(Object key,Text value,Context context)
 44 
 45                 throws IOException,InterruptedException{
 46 
 47             line=value;
 48 
 49             context.write(line, new Text(""));
 50 
 51         }
 52 
 53        
 54 
 55     }
 56 
 57    
 58 
 59     //reduce将输入中的key复制到输出数据的key上,并直接输出
 60 
 61     public static class Reduce extends Reducer{
 62 
 63         //实现reduce函数
 64 
 65         public void reduce(Text key,Iterable values,Context context)
 66 
 67                 throws IOException,InterruptedException{
 68 
 69             context.write(key, new Text(""));
 70 
 71         }
 72 
 73        
 74 
 75     }
 76 
 77    
 78 
 79     public static void main(String[] args) throws Exception{
 80 
 81         Configuration conf = new Configuration();
 82 
 83  //       conf.set("mapred.job.tracker", "192.168.1.2:9001");
 84 //没有设置Map/Reduce Location的话加上上面那句代码即可。
 85  
 86         String[] ioArgs=new String[]{"hdfs://192.168.10.128:9000/input/dedup","hdfs://192.168.10.128:9000/output/dedup3"};
 87 
 88      String[] otherArgs = new GenericOptionsParser(conf, ioArgs).getRemainingArgs();
 89 
 90      if (otherArgs.length != 2) {
 91 
 92      System.err.println("Usage: Data Deduplication  ");
 93 
 94      System.exit(2);
 95 
 96      }
 97 
 98      
 99 
100      Job job = new Job(conf, "Data Deduplication");
101 
102      job.setJarByClass(dedup.class);
103 
104      
105 
106      //设置Map、Combine和Reduce处理类
107 
108      job.setMapperClass(Map.class);
109 
110      job.setCombinerClass(Reduce.class);
111 
112      job.setReducerClass(Reduce.class);
113 
114      
115 
116      //设置输出类型
117 
118      job.setOutputKeyClass(Text.class);
119 
120      job.setOutputValueClass(Text.class);
121 
122      
123 
124      //设置输入和输出目录
125 
126      FileInputFormat.addInputPath(job, new Path(otherArgs[0]));
127 
128      FileOutputFormat.setOutputPath(job, new Path(otherArgs[1]));
129 
130      System.exit(job.waitForCompletion(true) ? 0 : 1);
131 
132      }
133 
134 } 

在eclipse编译的过程就不用说了,有问题可以看我前面几篇博客。

例3.排序

对输入文件中数据进行排序。输入文件中的每行内容均为一个数字,即一个数据。要求在输出中每行有两个间隔的数字,其中,第一个代表原始数据在原始数据集中的位次,第二个代表原始数据。

    样例输入:

    1)file1:

2

32

654

32

15

756

65223

    2)file2:

5956

22

650

92

    3)file3:

26

54

6

    样例输出:

1    2

2    6

3    15

4    22

5    26

6    32

7    32

8    54

9    92

10    650

11    654

12    756

13    5956

14    65223

代码如下:

import java.io.IOException;

 

import org.apache.hadoop.conf.Configuration;

import org.apache.hadoop.fs.Path;

import org.apache.hadoop.io.IntWritable;

import org.apache.hadoop.io.Text;

import org.apache.hadoop.mapreduce.Job;

import org.apache.hadoop.mapreduce.Mapper;

import org.apache.hadoop.mapreduce.Reducer;

import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;

import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;

import org.apache.hadoop.util.GenericOptionsParser;

 

public class Sort {

 

    //map将输入中的value化成IntWritable类型,作为输出的key

    public static class Map extends

        Mapper{

        private static IntWritable data=new IntWritable();

       

        //实现map函数

        public void map(Object key,Text value,Context context)

                throws IOException,InterruptedException{

            String line=value.toString();

            data.set(Integer.parseInt(line));

            context.write(data, new IntWritable(1));

        }

       

    }

   

    //reduce将输入中的key复制到输出数据的key上,

    //然后根据输入的value-list中元素的个数决定key的输出次数

    //用全局linenum来代表key的位次

    public static class Reduce extends

            Reducer{

       

        private static IntWritable linenum = new IntWritable(1);

       

        //实现reduce函数

        public void reduce(IntWritable key,Iterable values,Context context)

                throws IOException,InterruptedException{

            for(IntWritable val:values){

                context.write(linenum, key);

                linenum = new IntWritable(linenum.get()+1);

            }

           

        }

 

    }

   

    public static void main(String[] args) throws Exception{

        Configuration conf = new Configuration();

 //     conf.set("mapred.job.tracker", "192.168.1.2:9001");


     String[] otherArgs = new GenericOptionsParser(conf, args).getRemainingArgs();

     if (otherArgs.length != 2) {

     System.err.println("Usage: Data Sort  ");

         System.exit(2);

     }

     

     Job job = new Job(conf, "Data Sort");

     job.setJarByClass(Sort.class);

     

     //设置Map和Reduce处理类

     job.setMapperClass(Map.class);

     job.setReducerClass(Reduce.class);

     

     //设置输出类型

     job.setOutputKeyClass(IntWritable.class);

     job.setOutputValueClass(IntWritable.class);

     

     //设置输入和输出目录

     FileInputFormat.addInputPath(job, new Path(otherArgs[0]));

     FileOutputFormat.setOutputPath(job, new Path(otherArgs[1]));

     System.exit(job.waitForCompletion(true) ? 0 : 1);

     }

} 

编译打包的过程都一样,不再赘述。

例4.单表关联

实例中给出child-parent(孩子——父母)表,要求输出grandchild-grandparent(孙子——爷奶)表。

    样例输入如下所示。

    file:

child        parent

Tom        Lucy

Tom        Jack

Jone        Lucy

Jone        Jack

Lucy        Mary

Lucy        Ben

Jack        Alice

Jack        Jesse

Terry        Alice

Terry        Jesse

Philip        Terry

Philip        Alma

Mark        Terry

Mark        Alma

样例输出如下所示。

    file:

grandchild        grandparent

Tom              Alice

Tom              Jesse

Jone              Alice

Jone              Jesse

Tom              Mary

Tom              Ben

Jone              Mary

Jone              Ben

Philip              Alice

Philip              Jesse

Mark              Alice

Mark              Jesse

  分析这个实例,显然需要进行单表连接,连接的是左表的parent列和右表的child列,且左表和右表是同一个表。

  连接结果中除去连接的两列就是所需要的结果——"grandchild--grandparent"表。要用MapReduce解决这个实例,首先应该考虑如何实现表的自连接;其次就是连接列的设置;最后是结果的整理。

      考虑到MapReduce的shuffle过程会将相同的key会连接在一起,所以可以将map结果的key设置成待连接的列,然后列中相同的值就自然会连接在一起了。再与最开始的分析联系起来:

  要连接的是左表的parent列和右表的child列,且左表和右表是同一个表,所以在map阶段将读入数据分割成child和parent之后,会将parent设置成key,child设置成value进行输出,并作为左表;再将同一对child和parent中的child设置成key,parent设置成value进行输出,作为右表。为了区分输出中的左右表,需要在输出的value中再加上左右表的信息,比如在value的String最开始处加上字符1表示左表,加上字符2表示右表。这样在map的结果中就形成了左表和右表,然后在shuffle过程中完成连接。reduce接收到连接的结果,其中每个key的value-list就包含了"grandchild--grandparent"关系。取出每个key的value-list进行解析,将左表中的child放入一个数组,右表中的parent放入一个数组,然后对两个数组求笛卡尔积就是最后的结果了。

代码如下:

 

  1 import java.io.IOException;
  2 
  3 import java.util.*;
  4 
  5  
  6 
  7 import org.apache.hadoop.conf.Configuration;
  8 
  9 import org.apache.hadoop.fs.Path;
 10 
 11 import org.apache.hadoop.io.IntWritable;
 12 
 13 import org.apache.hadoop.io.Text;
 14 
 15 import org.apache.hadoop.mapreduce.Job;
 16 
 17 import org.apache.hadoop.mapreduce.Mapper;
 18 
 19 import org.apache.hadoop.mapreduce.Reducer;
 20 
 21 import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
 22 
 23 import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
 24 
 25 import org.apache.hadoop.util.GenericOptionsParser;
 26 
 27  
 28 
 29 public class STjoin {
 30 
 31  
 32 
 33     public static int time = 0;
 34 
 35  
 36 
 37     /*
 38 
 39      * map将输出分割child和parent,然后正序输出一次作为右表,
 40 
 41      * 反序输出一次作为左表,需要注意的是在输出的value中必须
 42 
 43      * 加上左右表的区别标识。
 44 
 45      */
 46 
 47     public static class Map extends Mapper {
 48 
 49  
 50 
 51         // 实现map函数
 52 
 53         public void map(Object key, Text value, Context context)
 54 
 55                 throws IOException, InterruptedException {
 56 
 57             String childname = new String();// 孩子名称
 58 
 59             String parentname = new String();// 父母名称
 60 
 61             String relationtype = new String();// 左右表标识
 62 
 63  
 64 
 65             // 输入的一行预处理文本
 66 
 67             StringTokenizer itr=new StringTokenizer(value.toString());
 68 
 69             String[] values=new String[2];
 70 
 71             int i=0;
 72 
 73             while(itr.hasMoreTokens()){
 74 
 75                 values[i]=itr.nextToken();
 76 
 77                 i++;
 78 
 79             }
 80 
 81            
 82 
 83             if (values[0].compareTo("child") != 0) {
 84 
 85                 childname = values[0];
 86 
 87                 parentname = values[1];
 88 
 89  
 90 
 91                 // 输出左表
 92 
 93                 relationtype = "1";
 94 
 95                 context.write(new Text(values[1]), new Text(relationtype +
 96 
 97                         "+"+ childname + "+" + parentname));
 98 
 99  
100 
101                 // 输出右表
102 
103                 relationtype = "2";
104 
105                 context.write(new Text(values[0]), new Text(relationtype +
106 
107                         "+"+ childname + "+" + parentname));
108 
109             }
110 
111         }
112 
113  
114 
115     }
116 
117  
118 
119     public static class Reduce extends Reducer {
120 
121  
122 
123         // 实现reduce函数
124 
125         public void reduce(Text key, Iterable values, Context context)
126 
127                 throws IOException, InterruptedException {
128 
129  
130 
131             // 输出表头
132 
133             if (0 == time) {
134 
135                 context.write(new Text("grandchild"), new Text("grandparent"));
136 
137                 time++;
138 
139             }
140 
141  
142 
143             int grandchildnum = 0;
144 
145             String[] grandchild = new String[10];
146 
147             int grandparentnum = 0;
148 
149             String[] grandparent = new String[10];
150 
151  
152 
153             Iterator ite = values.iterator();
154 
155             while (ite.hasNext()) {
156 
157                 String record = ite.next().toString();
158 
159                 int len = record.length();
160 
161                 int i = 2;
162 
163                 if (0 == len) {
164 
165                     continue;
166 
167                 }
168 
169  
170 
171                 // 取得左右表标识
172 
173                 char relationtype = record.charAt(0);
174 
175                 // 定义孩子和父母变量
176 
177                 String childname = new String();
178 
179                 String parentname = new String();
180 
181  
182 
183                 // 获取value-list中value的child
184 
185                 while (record.charAt(i) != '+') {
186 
187                     childname += record.charAt(i);
188 
189                     i++;
190 
191                 }
192 
193  
194 
195                 i = i + 1;
196 
197  
198 
199                 // 获取value-list中value的parent
200 
201                 while (i < len) {
202 
203                     parentname += record.charAt(i);
204 
205                     i++;
206 
207                 }
208 
209  
210 
211                 // 左表,取出child放入grandchildren
212 
213                 if ('1' == relationtype) {
214 
215                     grandchild[grandchildnum] = childname;
216 
217                     grandchildnum++;
218 
219                 }
220 
221  
222 
223                 // 右表,取出parent放入grandparent
224 
225                 if ('2' == relationtype) {
226 
227                     grandparent[grandparentnum] = parentname;
228 
229                     grandparentnum++;
230 
231                 }
232 
233             }
234 
235  
236 
237             // grandchild和grandparent数组求笛卡尔儿积
238 
239             if (0 != grandchildnum && 0 != grandparentnum) {
240 
241                 for (int m = 0; m < grandchildnum; m++) {
242 
243                     for (int n = 0; n < grandparentnum; n++) {
244 
245                         // 输出结果
246 
247                         context.write(new Text(grandchild[m]), new Text(grandparent[n]));
248 
249                     }
250 
251                 }
252 
253             }
254 
255         }
256 
257     }
258 
259  
260 
261     public static void main(String[] args) throws Exception {
262 
263         Configuration conf = new Configuration();
264 
265 
266         String[] otherArgs = new GenericOptionsParser(conf, args).getRemainingArgs();
267 
268         if (otherArgs.length != 2) {
269 
270             System.err.println("Usage: Single Table Join  ");
271 
272             System.exit(2);
273 
274         }
275 
276  
277 
278         Job job = new Job(conf, "Single Table Join");
279 
280         job.setJarByClass(STjoin.class);
281 
282  
283 
284         // 设置Map和Reduce处理类
285 
286         job.setMapperClass(Map.class);
287 
288         job.setReducerClass(Reduce.class);
289 
290  
291 
292         // 设置输出类型
293 
294         job.setOutputKeyClass(Text.class);
295 
296         job.setOutputValueClass(Text.class);
297 
298  
299 
300         // 设置输入和输出目录
301 
302         FileInputFormat.addInputPath(job, new Path(otherArgs[0]));
303 
304         FileOutputFormat.setOutputPath(job, new Path(otherArgs[1]));
305 
306         System.exit(job.waitForCompletion(true) ? 0 : 1);
307 
308     }
309 
310 } 

 运行详解(此处图表来自虾皮)

    (1)Map处理:

    map函数输出结果如下所示。

 

child        parent                àà                    忽略此行

Tom        Lucy                   àà               

                                                    

Tom        Jack                    àà               

                                                    

Jone        Lucy                 àà               

                                                    

Jone        Jack                    àà               

                                                    

Lucy        Mary                   àà               

                                                    

Lucy        Ben                    àà               

                                                     

Jack        Alice                    àà               

                                                      

Jack        Jesse                   àà               

                                                      

Terry        Alice                   àà               

                                                      

Terry        Jesse                  àà               

                                                      

Philip        Terry                  àà               

                                                      

Philip        Alma                   àà               

                                                      

Mark        Terry                   àà               

                                                      

Mark        Alma                 àà               

                                                      

    (2)Shuffle处理

    在shuffle过程中完成连接。

 

map函数输出

排序结果

shuffle连接

1+Tom+Lucy>

2+Tom+Lucy>

1+Tom+Jack>

2+Tom+Jack>

1+Jone+Lucy>

2+Jone+Lucy>

1+Jone+Jack>

2+Jone+Jack>

1+Lucy+Mary>

2+Lucy+Mary>

1+Lucy+Ben>

2+Lucy+Ben>

1+Jack+Alice>

2+Jack+Alice>

1+Jack+Jesse>

2+Jack+Jesse>

1+Terry+Alice>

2+Terry+Alice>

1+Terry+Jesse>

2+Terry+Jesse>

1+Philip+Terry>

2+Philip+Terry>

1+Philip+Alma>

2+Philip+Alma>

1+Mark+Terry>

2+Mark+Terry>

1+Mark+Alma>

2+Mark+Alma>

1+Jack+Alice>

1+Terry+Alice>

1+Philip+Alma>

1+Mark+Alma>

1+Lucy+Ben>

1+Tom+Jack>

1+Jone+Jack>

2+Jack+Alice>

2+Jack+Jesse>

1+Jack+Jesse>

1+Terry+Jesse>

2+Jone+Lucy>

2+Jone+Jack>

1+Tom+Lucy>

1+Jone+Lucy>

2+Lucy+Mary>

2+Lucy+Ben>

1+Lucy+Mary>

2+Mark+Terry>

2+Mark+Alma>

2+Philip+Terry>

2+Philip+Alma>

2+Terry+Alice>

2+Terry+Jesse>

1+Philip+Terry>

1+Mark+Terry>

2+Tom+Lucy>

2+Tom+Jack>

1+Jack+Alice

        1+Terry+Alice

        1+Philip+Alma

        1+Mark+Alma >

1+Lucy+Ben>

1+Tom+Jack

        1+Jone+Jack

        2+Jack+Alice

        2+Jack+Jesse >

1+Jack+Jesse

        1+Terry+Jesse >

2+Jone+Lucy

        2+Jone+Jack>

1+Tom+Lucy

        1+Jone+Lucy

        2+Lucy+Mary

        2+Lucy+Ben>

1+Lucy+Mary

        2+Mark+Terry

        2+Mark+Alma>

2+Philip+Terry

        2+Philip+Alma>

2+Terry+Alice

        2+Terry+Jesse

        1+Philip+Terry

        1+Mark+Terry>

2+Tom+Lucy

        2+Tom+Jack>

 

    (3)Reduce处理

    首先由语句"0 != grandchildnum && 0 != grandparentnum"得知,只要在"value-list"中没有左表或者右表,则不会做处理,可以根据这条规则去除无效的shuffle连接。

 

无效shuffle连接

有效shuffle连接

1+Jack+Alice

        1+Terry+Alice

        1+Philip+Alma

        1+Mark+Alma >

1+Lucy+Ben>

1+Jack+Jesse

        1+Terry+Jesse >

2+Jone+Lucy

        2+Jone+Jack>

1+Lucy+Mary

        2+Mark+Terry

        2+Mark+Alma>

2+Philip+Terry

        2+Philip+Alma>

2+Tom+Lucy

        2+Tom+Jack>

1+Tom+Jack

        1+Jone+Jack

        2+Jack+Alice

        2+Jack+Jesse >

1+Tom+Lucy

        1+Jone+Lucy

        2+Lucy+Mary

        2+Lucy+Ben>

2+Terry+Alice

        2+Terry+Jesse

        1+Philip+Terry

        1+Mark+Terry>

    然后根据下面语句进一步对有效的shuffle连接做处理。

// 左表,取出child放入grandchildren

if ('1' == relationtype) {

    grandchild[grandchildnum] = childname;

    grandchildnum++;

}

 

// 右表,取出parent放入grandparent

if ('2' == relationtype) {

    grandparent[grandparentnum] = parentname;

    grandparentnum++;

}

    针对一条数据进行分析:

        1+Jone+Jack,

        2+Jack+Alice,

        2+Jack+Jesse >

    分析结果:左表用"字符1"表示,右表用"字符2"表示,上面的中的"key"表示左表与右表的连接键。而"value-list"表示以"key"连接的左表与右表的相关数据。

    根据上面针对左表与右表不同的处理规则,取得两个数组的数据如下所示:

 

grandchild

TomJonegrandchild[grandchildnum] = childname;

grandparent

AliceJessegrandparent[grandparentnum] = parentname;

    

    然后根据下面语句进行处理。

for (int m = 0; m < grandchildnum; m++) {

    for (int n = 0; n < grandparentnum; n++) {

        context.write(new Text(grandchild[m]), new Text(grandparent[n]));

    }

}

处理结果如下面所示:

Tom        Jesse

Tom        Alice

Jone        Jesse

Jone        Alice 

其他的有效shuffle连接处理都是如此。

例5.多表关联

样例输入如下所示。

    1)factory:

 

 

factoryname                    addressed

Beijing Red Star                    1

Shenzhen Thunder                3

Guangzhou Honda                2

Beijing Rising                       1

Guangzhou Development Bank      2

Tencent                        3

Back of Beijing                     1

 

 

 

    2)address:

 

 

addressID    addressname

1            Beijing

2            Guangzhou

3            Shenzhen

4            Xian

 

 

 

    样例输出如下所示。

 

 

 

factoryname                        addressname

Back of Beijing                          Beijing

Beijing Red Star                        Beijing

Beijing Rising                          Beijing

Guangzhou Development Bank          Guangzhou

Guangzhou Honda                    Guangzhou

Shenzhen Thunder                    Shenzhen

Tencent                            Shenzhen

 

   多表关联和单表关联相似,都类似于数据库中的自然连接。相比单表关联,多表关联的左右表和连接列更加清楚。所以可以采用和单表关联的相同的处理方式,map识别出输入的行属于哪个表之后,对其进行分割,将连接的列值保存在key中,另一列和左右表标识保存在value中,然后输出。reduce拿到连接结果之后,解析value内容,根据标志将左右表内容分开存放,然后求笛卡尔积,最后直接输出。

代码如下:

  1 import java.io.IOException;
  2 
  3 import java.util.*;
  4 
  5  
  6 
  7 import org.apache.hadoop.conf.Configuration;
  8 
  9 import org.apache.hadoop.fs.Path;
 10 
 11 import org.apache.hadoop.io.IntWritable;
 12 
 13 import org.apache.hadoop.io.Text;
 14 
 15 import org.apache.hadoop.mapreduce.Job;
 16 
 17 import org.apache.hadoop.mapreduce.Mapper;
 18 
 19 import org.apache.hadoop.mapreduce.Reducer;
 20 
 21 import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
 22 
 23 import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
 24 
 25 import org.apache.hadoop.util.GenericOptionsParser;
 26 
 27  
 28 
 29 public class MTjoin {
 30 
 31  
 32 
 33     public static int time = 0;
 34 
 35  
 36 
 37     /*
 38 
 39      * 在map中先区分输入行属于左表还是右表,然后对两列值进行分割,
 40 
 41      * 保存连接列在key值,剩余列和左右表标志在value中,最后输出
 42 
 43      */
 44 
 45     public static class Map extends Mapper {
 46 
 47  
 48 
 49         // 实现map函数
 50 
 51         public void map(Object key, Text value, Context context)
 52 
 53                 throws IOException, InterruptedException {
 54 
 55             String line = value.toString();// 每行文件
 56 
 57             String relationtype = new String();// 左右表标识
 58 
 59  
 60 
 61             // 输入文件首行,不处理
 62 
 63             if (line.contains("factoryname") == true
 64 
 65                     || line.contains("addressed") == true) {
 66 
 67                 return;
 68 
 69             }
 70 
 71  
 72 
 73             // 输入的一行预处理文本
 74 
 75             StringTokenizer itr = new StringTokenizer(line);
 76 
 77             String mapkey = new String();
 78 
 79             String mapvalue = new String();
 80 
 81             int i = 0;
 82 
 83             while (itr.hasMoreTokens()) {
 84 
 85                 // 先读取一个单词
 86 
 87                 String token = itr.nextToken();
 88 
 89                 // 判断该地址ID就把存到"values[0]"
 90 
 91                 if (token.charAt(0) >= '0' && token.charAt(0) <= '9') {
 92 
 93                     mapkey = token;
 94 
 95                     if (i > 0) {
 96 
 97                         relationtype = "1";
 98 
 99                     } else {
100 
101                         relationtype = "2";
102 
103                     }
104 
105                     continue;
106 
107                 }
108 
109  
110 
111                 // 存工厂名
112 
113                 mapvalue += token + " ";
114 
115                 i++;
116 
117             }
118 
119  
120 
121             // 输出左右表
122 
123             context.write(new Text(mapkey), new Text(relationtype + "+"+ mapvalue));
124 
125         }
126 
127     }
128 
129  
130 
131     /*
132 
133      * reduce解析map输出,将value中数据按照左右表分别保存,
134 
135   * 然后求出笛卡尔积,并输出。
136 
137      */
138 
139     public static class Reduce extends Reducer {
140 
141  
142 
143         // 实现reduce函数
144 
145         public void reduce(Text key, Iterable values, Context context)
146 
147                 throws IOException, InterruptedException {
148 
149  
150 
151             // 输出表头
152 
153             if (0 == time) {
154 
155                 context.write(new Text("factoryname"), new Text("addressname"));
156 
157                 time++;
158 
159             }
160 
161  
162 
163             int factorynum = 0;
164 
165             String[] factory = new String[10];
166 
167             int addressnum = 0;
168 
169             String[] address = new String[10];
170 
171  
172 
173             Iterator ite = values.iterator();
174 
175             while (ite.hasNext()) {
176 
177                 String record = ite.next().toString();
178 
179                 int len = record.length();
180 
181                 int i = 2;
182 
183                 if (0 == len) {
184 
185                     continue;
186 
187                 }
188 
189  
190 
191                 // 取得左右表标识
192 
193                 char relationtype = record.charAt(0);
194 
195  
196 
197                 // 左表
198 
199                 if ('1' == relationtype) {
200 
201                     factory[factorynum] = record.substring(i);
202 
203                     factorynum++;
204 
205                 }
206 
207  
208 
209                 // 右表
210 
211                 if ('2' == relationtype) {
212 
213                     address[addressnum] = record.substring(i);
214 
215                     addressnum++;
216 
217                 }
218 
219             }
220 
221  
222 
223             // 求笛卡尔积
224 
225             if (0 != factorynum && 0 != addressnum) {
226 
227                 for (int m = 0; m < factorynum; m++) {
228 
229                     for (int n = 0; n < addressnum; n++) {
230 
231                         // 输出结果
232 
233                         context.write(new Text(factory[m]),
234 
235                                 new Text(address[n]));
236 
237                     }
238 
239                 }
240 
241             }
242 
243  
244 
245         }
246 
247     }
248 
249  
250 
251     public static void main(String[] args) throws Exception {
252 
253         Configuration conf = new Configuration();
254 
255 //      conf.set("mapred.job.tracker", "192.168.1.2:9001");
256 
257         String[] otherArgs = new GenericOptionsParser(conf, args).getRemainingArgs();
258 
259         if (otherArgs.length != 2) {
260 
261             System.err.println("Usage: Multiple Table Join  ");
262 
263             System.exit(2);
264 
265         }
266 
267  
268 
269         Job job = new Job(conf, "Multiple Table Join");
270 
271         job.setJarByClass(MTjoin.class);
272 
273  
274 
275         // 设置Map和Reduce处理类
276 
277         job.setMapperClass(Map.class);
278 
279         job.setReducerClass(Reduce.class);
280 
281  
282 
283         // 设置输出类型
284 
285         job.setOutputKeyClass(Text.class);
286 
287         job.setOutputValueClass(Text.class);
288 
289  
290 
291         // 设置输入和输出目录
292 
293         FileInputFormat.addInputPath(job, new Path(otherArgs[0]));
294 
295         FileOutputFormat.setOutputPath(job, new Path(otherArgs[1]));
296 
297         System.exit(job.waitForCompletion(true) ? 0 : 1);
298 
299     }
300 
301 } 

注:本博客大部分代码来自《Hadoop实战2》,中国人民大学,陆嘉恒著。

转载于:https://www.cnblogs.com/dmyu/p/4684062.html

你可能感兴趣的:(大数据,java,c/c++)