之前我们的u-boot虽然能够运行,但是是在sdram中,并没有烧写到flash中,因此,如果我们重启开发板,之前的u-boot就丢失了。如果我们想要让u-boot上电就启动,那么我们必须要把u-boot烧写到flash中保存起来。
这里我将u-boot固化到nandflash,使u-boot支持从nandflash启动。
一、添加NOR Flash启动和NAND Flash启动的识别
识别u-boot是从nandflash启动还是norflash启动,这里我总结了两种方法:
1 是通过nandflash的datasheet中的记载,其OM[1:0]规定了启动的地点,当OM的低两位为:00时,从nandflash启动,01或者10都为norflash启动,因此可以通过判断这两位的值来判断
代码如下:
/*OM[1:0] != 0, 跳转到NOR FLASH 启动处,OM[1:0] = 0,向下执行代码,从nandflash启动 */
#define BWSCON 0x48000000
ldr r0, =BWSCON
ldr r0, [r0]
ands r0, r0, #0x6
tst r0, #0x0
bne norflash_boot
2是将地址4000003C置为0,如果在地址0000003C中读出的值为0,则代表u-boot从nandflash启动,如果读出的值是0xdeadbeaf,则代表u-boot从norflash启动(原理如下:s3c24x0在上电后,会把内部的sram映射到0x40000000地址上,如果从nandflash启动,sram还将映射到0x00000000地址上。因为0x3c之前的地址空间都被使用,在程序开始的时候做中断向量跳转去了,而且这个地址的值是确定的,也不属于程序,所以我们选择0x0000003c这个地址空间作为检测。如果我们往0x4000003c这个地址上写0,检测到0x0000003c是0,代表是从nandflash启动,如果检测到0xdeadbeaf,代表从norflash启动)
代码如下:
ldr r1, =( (4<<28)|(3<<4)|(3<<2) ) /*载入地址0x4000003C*/
mov r0, #0 /* r0 = 0 */
str r0, [r1] /*将R1所代表的地址(0x4000003C)写0*/
mov r1, #0x3c /*载入地址 0x0000003C*/
ldr r0, [r1]
cmp r0, #0 /*将0x0000003C中的值和0做比较,然后跳转*/
bne NORFLASH_BOOT
二,添加nandflash拷贝代码:
#define LENGTH_UBOOT 0x60000
NANDFLASH_BOOT:
/*Get ready to call C functions for nand_read_ll()*/
ldr sp, DW_STACK_START @ setup stack pointer
mov fp, #0 @ no previous frame, so fp=0
/* Read u-boot from Nandflash to SDRAM address $TEXT_BASE */
ldr r0, =TEXT_BASE /*nand_read_ll() 1st argument*/
mov r1, #0x0 /*nand_read_ll() 2nd argument*/
mov r2, #LENGTH_UBOOT /*nand_read_ll() 3rd argument*/
bl nand_read_ll
/*跳转到nand_read_ll函数中,完成相应的操作,注意:nand_read_ll函数需要三个参数,这三个参数分别放在R0,R1,R2中*/
tst r0, #0x0 /*Check nand_read_ll() return value*/
bne infinite_loop /*nand_read_ll() not return 0, then goto dead loop*/
nand_read_ok:
/*Then verify the read data validation,
读取前4K代码,和sram中的代码做比较,确认读取的代码有效,*/
mov r0, #0 /*The first 4K data in internal SRAM*/
ldr r1, =TEXT_BASE /*The first 4K data read from Nandflash in SDRAM*/
mov r2, #0x400 /*The compare data length*/
compare_next_byte:
ldr r3, [r0], #4
ldr r4, [r1], #4
teq r3, r4
bne infinite_loop /*如果出现数据不一样,跳转到infinite_loop,死循环*/
subs r2, r2, #4
beq stack_setup
bne compare_next_byte
infinite_loop:
b infinite_loop
三,添加C语言从NAND Flash搬移代码部分,刚刚我们看到了汇编部分会调用一个C函数nand_read_ll,这个函数就在nand_read.c文件中
首先在board/fl2440目录下新建一个名为nand_read.c的文件,内容如下
/*
* nand_read.c: Simple NAND read functions for booting from NAND
*
* This is used by cpu/arm920/start.S assembler code,
* and the board-specific linker script must make sure this
* file is linked within the first 4kB of NAND flash.
*
* Taken from GPLv2 licensed vivi bootloader,
* Copyright (C) 2002 MIZI Research, Inc.
*
* Author: Hwang, Chideok
* Date : $Date: 2004/02/04 10:37:37 $
*
* u-boot integration and bad-block skipping (C) 2006 by OpenMoko, Inc.
* Author: Harald Welte
*
*Author: hurryliu
*/
#include
#include
#define __REGb(x) (*(volatile unsigned char *)(x))
#define __REGw(x) (*(volatile unsigned short *)(x))
#define __REGi(x) (*(volatile unsigned int *)(x))
#define NF_BASE 0x4e000000
#if defined(CONFIG_S3C2410)
#define NFCONF __REGi(NF_BASE + 0x0)
#define NFCMD __REGb(NF_BASE + 0x4)
#define NFADDR __REGb(NF_BASE + 0x8)
#define NFDATA __REGb(NF_BASE + 0xc)
#define NFSTAT __REGb(NF_BASE + 0x10)
#define NFSTAT_BUSY 1
#define nand_select() (NFCONF &= ~0x800)
#define nand_deselect() (NFCONF |= 0x800)
#define nand_clear_RnB()do {} while (0)
#elif defined(CONFIG_S3C2440) || defined(CONFIG_S3C2442)
#define NFCONF __REGi(NF_BASE + 0x0)
#define NFCONT __REGi(NF_BASE + 0x4)
#define NFCMD __REGb(NF_BASE + 0x8)
#define NFADDR __REGb(NF_BASE + 0xc)
#define NFDATA __REGb(NF_BASE + 0x10)
#define NFDATA16 __REGw(NF_BASE + 0x10)
#define NFSTAT __REGb(NF_BASE + 0x20)
#define NFSTAT_BUSY 1
#define nand_select() (NFCONT &= ~(1 << 1))
#define nand_deselect() (NFCONT |= (1 << 1))
#define nand_clear_RnB()(NFSTAT |= (1 << 2))
#endif
static inline void nand_wait(void)
{
int i;
while (!(NFSTAT & NFSTAT_BUSY))
for (i=0; i<10; i++);
}
struct boot_nand_t {
int page_size;
int block_size;
int bad_block_offset;
// unsigned long size;
};
#if 0
#if defined(CONFIG_S3C2410) || defined(CONFIG_MINI2440)
/* configuration for 2410 with 512byte sized flash */
#define NAND_PAGE_SIZE 512
#define BAD_BLOCK_OFFSET 5
#define NAND_BLOCK_MASK (NAND_PAGE_SIZE - 1)
#define NAND_BLOCK_SIZE 0x4000
#else
/* configuration for 2440 with 2048byte sized flash */
#define NAND_5_ADDR_CYCLE
#define NAND_PAGE_SIZE 2048
#define BAD_BLOCK_OFFSET NAND_PAGE_SIZE
#define NAND_BLOCK_MASK (NAND_PAGE_SIZE - 1)
#define NAND_BLOCK_SIZE (NAND_PAGE_SIZE * 64)
#endif
/* compile time failure in case of an invalid configuration */
#if defined(CONFIG_S3C2410) && (NAND_PAGE_SIZE != 512)
#error "S3C2410 does not support nand page size != 512"
#endif
#endif
static int is_bad_block(struct boot_nand_t * nand, unsigned long i)
{
unsigned char data;
unsigned long page_num;
nand_clear_RnB();
if (nand->page_size == 512) {
NFCMD = NAND_CMD_READOOB; /* 0x50 */
NFADDR = nand->bad_block_offset & 0xf;
NFADDR = (i >> 9) & 0xff;
NFADDR = (i >> 17) & 0xff;
NFADDR = (i >> 25) & 0xff;
} else if (nand->page_size == 2048) {
page_num = i >> 11; /* addr / 2048 */
NFCMD = NAND_CMD_READ0;
NFADDR = nand->bad_block_offset & 0xff;
NFADDR = (nand->bad_block_offset >> 8) & 0xff;
NFADDR = page_num & 0xff;
NFADDR = (page_num >> 8) & 0xff;
NFADDR = (page_num >> 16) & 0xff;
NFCMD = NAND_CMD_READSTART;
} else {
return -1;
}
nand_wait();
data = (NFDATA & 0xff);
if (data != 0xff)
return 1;
return 0;
}
static int nand_read_page_ll(struct boot_nand_t * nand, unsigned char *buf, unsigned long addr)
{
unsigned short *ptr16 = (unsigned short *)buf;
unsigned int i, page_num;
nand_clear_RnB();
NFCMD = NAND_CMD_READ0;
if (nand->page_size == 512) {
/* Write Address */
NFADDR = addr & 0xff;
NFADDR = (addr >> 9) & 0xff;
NFADDR = (addr >> 17) & 0xff;
NFADDR = (addr >> 25) & 0xff;
} else if (nand->page_size == 2048) {
page_num = addr >> 11; /* addr / 2048 */
/* Write Address */
NFADDR = 0;
NFADDR = 0;
NFADDR = page_num & 0xff;
NFADDR = (page_num >> 8) & 0xff;
NFADDR = (page_num >> 16) & 0xff;
NFCMD = NAND_CMD_READSTART;
} else {
return -1;
}
nand_wait();
#if defined(CONFIG_S3C2410)
for (i = 0; i < nand->page_size; i++) {
*buf = (NFDATA & 0xff);
buf++;
}
#elif defined(CONFIG_S3C2440) || defined(CONFIG_S3C2442)
for (i = 0; i < (nand->page_size>>1); i++) {
*ptr16 = NFDATA16;
ptr16++;
}
#endif
return nand->page_size;
}
static unsigned short nand_read_id()
{
unsigned short res = 0;
NFCMD = NAND_CMD_READID;
NFADDR = 0;
res = NFDATA;
res = (res << 8) | NFDATA;
return res;
}
extern unsigned int dynpart_size[];
/* low level nand read function */
int nand_read_ll(unsigned char *buf, unsigned long start_addr, int size)
{
int i, j;
unsigned short nand_id;
struct boot_nand_t nand;
/* chip Enable */
nand_select();
nand_clear_RnB();
for (i = 0; i < 10; i++)
;
nand_id = nand_read_id();
if (0) { /* dirty little hack to detect if nand id is misread */
unsigned short * nid = (unsigned short *)0x31fffff0;
*nid = nand_id;
}
if (nand_id == 0xec76 || /* Samsung K91208 on SD2410 board */
nand_id == 0xad76 ) { /*Hynix HY27US08121A*/
nand.page_size = 512;
nand.block_size = 16 * 1024;
nand.bad_block_offset = 5;
// nand.size = 0x4000000;
} else if (nand_id == 0xecf1 || /* Samsung K9F1G08U0B */
nand_id == 0xadda || /* Hynix HY27UF082G2B on FL2440 board */
nand_id == 0xecda || /* Samsung K9F2G08U0B on FL2440 board */
nand_id == 0xecd3 ) { /* Samsung K9K8G08 */
nand.page_size = 2048;
nand.block_size = 128 * 1024;
nand.bad_block_offset = nand.page_size;
// nand.size = 0x8000000;
} else {
return -1; // hang
}
if ((start_addr & (nand.block_size-1)) || (size & ((nand.block_size-1))))
return -1; /* invalid alignment */
for (i=start_addr; i < (start_addr + size);) {
#ifdef CONFIG_S3C2410_NAND_SKIP_BAD
if (i & (nand.block_size-1)== 0) {
if (is_bad_block(&nand, i) ||
is_bad_block(&nand, i + nand.page_size)) {
/* Bad block */
i += nand.block_size;
size += nand.block_size;
continue;
}
}
#endif
j = nand_read_page_ll(&nand, buf, i);
i += j;
buf += j;
}
/* chip Disable */
nand_deselect();
return 0;
}
四,修改board/fl2440/Makefile文件,使得nand_read.c能被编译到u-boot.bin中(28行)
COBJS := fl2440.onand_read.o flash.o
五,修改文件arch/arm/cpu/arm920t/u-boot.lds,将u-boot从nandflash搬运的代码链接到前4K的u-boot.bin中(40行左右)
.text :
{
arch/arm/cpu/arm920t/start.o (.text)
board/fl2440/lowlevel_init.o (.text)
board/fl2440/nand_read.o (.text)
*(.text)
}
六,修改include/configs/fl2440.h文件,让u-boot支持nandflash串口操作
/*-----------------------------------------------------------------------
* NAND flash settings
*/
#if defined(CONFIG_CMD_NAND)
#define CONFIG_NAND_S3C2410
#define CONFIG_SYS_MAX_NAND_DEVICE 1 /* Max number of NAND devices */
#define CONFIG_SYS_NAND_BASE 0x4E000000
#define SECTORSIZE 512
#define SECTORSIZE_2K 2048
#define NAND_SECTOR_SIZE SECTORSIZE
#define NAND_SECTOR_SIZE_2K SECTORSIZE_2K
#define NAND_BLOCK_MASK 511
#define NAND_BLOCK_MASK_2K 2047
#define NAND_MAX_CHIPS 1
#define CONFIG_MTD_NAND_VERIFY_WRITE
#define CONFIG_SYS_64BIT_VSPRINTF /* needed for nand_util.c */
#endif /* CONFIG_CMD_NAND */
七,修改drivers/mtd/nand/s3c2410_nand.c文件,支持nandflash的读写(27行左右)
修改宏定义如下
#define NF_BASE 0x4e000000
#if defined(CONFIG_S3C2410)
#define S3C2410_NFCONF_EN (1<<15)
#define S3C2410_NFCONF_512BYTE (1<<14)
#define S3C2410_NFCONF_4STEP (1<<13)
#define S3C2410_NFCONF_INITECC (1<<12)
#define S3C2410_NFCONF_nFCE (1<<11)
#define S3C2410_NFCONF_TACLS(x) ((x)<<8)
#define S3C2410_NFCONF_TWRPH0(x) ((x)<<4)
#define S3C2410_NFCONF_TWRPH1(x) ((x)<<0)
#define S3C2410_ADDR_NALE 4
#define S3C2410_ADDR_NCLE 8
#endif
#if defined(CONFIG_S3C2440)
#define S3C2410_NFCONT_EN (1<<0)
#define S3C2410_NFCONT_INITECC (1<<4)
#define S3C2410_NFCONT_nFCE (1<<1)
#define S3C2410_NFCONT_MAINECCLOCK (1<<5)
#define S3C2410_NFCONF_TACLS(x) ((x)<<12)
#define S3C2410_NFCONF_TWRPH0(x) ((x)<<8)
#define S3C2410_NFCONF_TWRPH1(x) ((x)<<4)
#define S3C2410_ADDR_NALE 0x08
#define S3C2410_ADDR_NCLE 0x0c
#endif
ulong IO_ADDR_W = NF_BASE;
#ifdef CONFIG_NAND_SPL
修改s3c2410_hwcontrol函数为如下
static void s3c2410_hwcontrol(struct mtd_info *mtd, int cmd, unsigned int ctrl)
{
// struct nand_chip *chip = mtd->priv;
struct s3c2410_nand *nand = s3c2410_get_base_nand();
debugX(1, "hwcontrol(): 0x%02x 0x%02x\n", cmd, ctrl);
if (ctrl & NAND_CTRL_CHANGE) {
//ulong IO_ADDR_W = (ulong)nand;
IO_ADDR_W = (ulong)nand;
if (!(ctrl & NAND_CLE))
IO_ADDR_W |= S3C2410_ADDR_NCLE;
if (!(ctrl & NAND_ALE))
IO_ADDR_W |= S3C2410_ADDR_NALE;
// chip->IO_ADDR_W = (void *)IO_ADDR_W;
if (ctrl & NAND_NCE)
#if defined(CONFIG_S3C2410) /* modify by hurryliu */
writel(readl(&nand->NFCONF) & ~S3C2410_NFCONF_nFCE,&nand->NFCONF);
#elif defined(CONFIG_S3C2440)
writel(readl(&nand->NFCONT) & ~S3C2410_NFCONT_nFCE,&nand->NFCONT);
#endif
else
#if defined(CONFIG_S3C2410)
writel(readl(&nand->NFCONF) | S3C2410_NFCONF_nFCE,&nand->NFCONF);
#elif defined(CONFIG_S3C2440)
writel(readl(&nand->NFCONT) | S3C2410_NFCONT_nFCE,&nand->NFCONT);
#endif
}
if (cmd != NAND_CMD_NONE)
//writeb(cmd, chip->IO_ADDR_W);
writeb(cmd, (void *)IO_ADDR_W);
}
修改s3c2410_nand_enable_hwecc函数如下:
void s3c2410_nand_enable_hwecc(struct mtd_info *mtd, int mode)
{
struct s3c2410_nand *nand = s3c2410_get_base_nand();
debugX(1, "s3c2410_nand_enable_hwecc(%p, %d)\n", mtd, mode);
#if defined(CONFIG_S3C2410)
writel(readl(&nand->NFCONF) | S3C2410_NFCONF_INITECC, &nand->NFCONF);
#elif defined(CONFIG_S3C2440) /*add by hurryliu*/
writel(readl(&nand->NFCONT) | S3C2410_NFCONT_INITECC, &nand->NFCONT);
#endif
}
修改board_nand_init函数如下:
int board_nand_init(struct nand_chip *nand)
{
u_int32_t cfg;
u_int8_t tacls, twrph0, twrph1;
struct s3c24x0_clock_power *clk_power = s3c24x0_get_base_clock_power();
struct s3c2410_nand *nand_reg = s3c2410_get_base_nand();
debugX(1, "board_nand_init()\n");
writel(readl(&clk_power->CLKCON) | (1 << 4), &clk_power->CLKCON);
#if defined(CONFIG_S3C2410)
/* initialize hardware */
twrph0 = 3;
twrph1 = 0;
tacls = 0;
cfg = S3C2410_NFCONF_EN;
cfg |= S3C2410_NFCONF_TACLS(tacls - 1);
cfg |= S3C2410_NFCONF_TWRPH0(twrph0 - 1);
cfg |= S3C2410_NFCONF_TWRPH1(twrph1 - 1);
writel(cfg, &nand_reg->NFCONF);
/* initialize nand_chip data structure */
nand->IO_ADDR_R = nand->IO_ADDR_W = (void *)&nand_reg->NFDATA;
#elif defined(CONFIG_S3C2440)
/* initialize hardware */
tacls = 0;
twrph0 = 4;
twrph1 = 2;
cfg = 0;
cfg |= S3C2410_NFCONF_TACLS(tacls - 1);
cfg |= S3C2410_NFCONF_TWRPH0(twrph0 - 1);
cfg |= S3C2410_NFCONF_TWRPH1(twrph1 - 1);
writel(cfg, &nand_reg->NFCONF);
cfg = (0<<13)|(0<<12)|(0<<10)|(0<<9)|(0<<8)|(0<<6)|(0<<5)|(1<<4)|(0<<1)|(1<<0);
writel(cfg, &nand_reg->NFCONT);
/* initialize nand_chip data structure */
nand->IO_ADDR_R = nand->IO_ADDR_W = (void *)&nand_reg->NFDATA;
#endif
nand->select_chip = NULL;
/* read_buf and write_buf are default */
/* read_byte and write_byte are default */
#ifdef CONFIG_NAND_SPL
nand->read_buf = nand_read_buf;
#endif
/* hwcontrol always must be implemented */
nand->cmd_ctrl = s3c2410_hwcontrol;
nand->dev_ready = s3c2410_dev_ready;
#ifdef CONFIG_S3C2410_NAND_HWECC
nand->ecc.hwctl = s3c2410_nand_enable_hwecc;
nand->ecc.calculate = s3c2410_nand_calculate_ecc;
nand->ecc.correct = s3c2410_nand_correct_data;
nand->ecc.mode = NAND_ECC_HW;
nand->ecc.size = CONFIG_SYS_NAND_ECCSIZE;
nand->ecc.bytes = CONFIG_SYS_NAND_ECCBYTES;
#else
nand->ecc.mode = NAND_ECC_SOFT;
#endif
#ifdef CONFIG_S3C2410_NAND_BBT
nand->options = NAND_USE_FLASH_BBT;
#else
nand->options = 0;
#endif
debugX(1, "end of nand_init\n");
return 0;
}
添加nandflash寄存器的定义board/fl2440/lowlevel_init.S
#define S3C24X0_INTERRUPT_BASE 0x4A000000
#define S3C24X0_CLOCK_POWER_BASE 0x4C000000
#define S3C2410_NAND_BASE 0x4E000000
#define S3C24X0_WATCHDOG_BASE 0x53000000
#define S3C24X0_GPIO_BASE 0x56000000
#define GPBCON 0x56000010
#define GPBDAT 0x56000014
#define GPBUP 0x56000018
#define INTMSK_OFFSET 0x08
#define INTSUBMSK_OFFSET 0x1c
#define MPLLCON_OFFSET 0x04
#define CLKDIVN_OFFSET 0x14
#define NFCONF_OFFSET 0x00
#define NFCONT_OFFSET 0x04
#define NFCMD_OFFSET 0x08
#define NFSTAT_OFFSET 0x20
#define MDIV_405 0x7f << 12
#define PSDIV_405 0x21
#define MDIV_200 0xa1 << 12
#define PSDIV_200 0x31