1、两柱香问题
题目:有两柱不均匀的香,每柱香燃烧完需要1个小时,问:怎样用两柱香切出一个15分钟的时间段?这个题的重点就是怎么切。
解答:将甲香的一头点着,将乙香的两头点着,当乙香燃烧完时,说明已经过了半个小时,同时也说明甲香也正好燃烧了一半,此时,将甲香的另一头点着,从此时起到甲香完全烧完,正好15分钟。
2、灯管问题
在房里有三盏灯,房外有三个开关,在房外看不见房内的情况,你只能进门一次,你用什么方法来区分那个开关控制那一盏灯?
解答:打开一盏灯10分钟,关掉,打开第二盏,进去看看哪盏亮,摸摸哪盏热,热的是第一个打开的开关开的,亮的是第二个开关开的,另一个就是第三个
3、两位盲人问题
他们都各自买了两对黑袜和两对白袜,八对袜了的布质、大小完全相同,而每对袜了都有一张商标纸连着。两位盲人不小心将八对袜了混在一起。 他们每人怎样才能取回黑袜和白袜各两对呢?
答案:每一对分开,一人拿一只,因为袜子不分左右脚的;
4、果冻问题
你有一桶果冻,其中有黄色,绿色,红色三种,闭上眼睛,同时抓取两个果冻。抓取多少个就可以确定你肯定有两个同一颜色的果冻?
答案:2次4个!
5、喝啤酒问题
假如每3个空啤酒瓶可以换一瓶啤酒,某人买了10瓶啤酒,那么他最多可以喝到多少瓶啤酒?
答案:喝完10瓶后用9个空瓶换来3瓶啤酒(喝完后有4个空瓶)喝完这三瓶又可以换到1瓶啤酒(喝完后有2个空瓶),这时他有2个空酒瓶,如果他能向老板先借一个空酒瓶,就凑够了3个空瓶可以换到一瓶啤酒,把这瓶喝完后将空瓶还给老板就可以了。
所以他最多可以喝10+3+1+1=15瓶
6、三人住旅馆
有三个人去住旅馆,住三间房,每一间房$10元,于是他们一共付给老板$30,第二天,老板觉得三间房只需要$25元就够了于是叫小弟退回$5给三位客人,谁知小弟贪心,只退回每人$1,自己偷偷拿了$2,这样一来便等于那三位客人每人各花了九元,于是三个人一共花了$27,再加上小弟独吞了不$2,总共是$29。可是当初他们三个人一共付出$30那么还有$1呢?
答案:他们所消费的27元里已经包括小弟贪污的2元了,再加退还的3元=30元。这种题一定不要乱了阵脚,根据一条思路做:这30元现在的分布是:老板拿25元,伙计拿2元,三人各拿1元,正好!
7、三筐苹果问题
有三筐水果,一筐装的全是苹果,第二筐装的全是橘子,第三筐是橘子与苹果混在一起。筐上的标签都是骗人的,(就是说筐上的标签都是错的)你的任务是拿出其中一筐,从里面只拿一只水果,然后正确写出三筐水果的标签。
答案:从标着“混合”标签的筐里拿一只水果,就可以知道另外两筐装的是什么水果了。
分析:从混合的拿出一个来,如果是苹果,而贴苹果的筐里有可能是橘子和混合,如果是混合,说明贴橘子的筐里是橘子,不成立(因为前提说了,每个标签都是错的)。所以贴苹果的筐里是橘子,则贴橘子的筐里是混合。
8..问题描述:一辆汽车加满油后可行驶 Lkm。旅途中有num个加油站,加油站间距离存储在station[]中,设计一个有效算法,指出应在哪些加油站停靠加油,使沿途加油次数最少。
//station存储加油站间距离的数组,ins满油行驶里程,num加油站数量
int MinOilTime(int station[],int L,int num){
int lv;//油箱中的油量可以走的距离
int all;//最少加油次数
for(i=0;iL) {
printf("汽车不可能达到终点站");
return 0;
}
if(lv>=stations[i]){
lv-=stations[i];
}
else { //否则加满油
lv=L-stations[i];
all++;
}
}
return all;
}
9.猴子吃香蕉问题
一个小猴子边上有100 根香蕉,它要走过50 米才能到家,每次它最多搬50 根香蕉,每走1 米就要吃掉一根,请问它最多能把多少根香蕉搬到家里。
解答:设 小猴从0 走到50, 到A 点时候他可以直接抱香蕉回家了, 可是到A 点时候他至少消耗了3A 的香蕉( 到A, 回0, 到A), 一个限制就是小猴只能抱50 只香蕉, 那么在A 点小猴最多49 只香蕉.100-3A=49, 所以A=17. 这样折腾完到家的时候香蕉剩100-3A-(50-A)=50-2A=16.,本质上就是求max(100-3*A)<50,求解A得17.
10、 村子里有100对夫妻,其中每个丈夫都瞒着自己的妻子偷情。村里的每个妻子都能立即发现除自己丈夫之外的其他男人是否偷情,唯独不知道她自己的丈夫到底有没有偷情。村里的规矩不容忍通奸。任何一个妻子,一旦能证明自己的男人偷情,就必须当天把他杀死。村里的女人全都严格照此规矩办事。一天,女头领出来宣布,村里至少有一个丈夫偷情。请问接下来会发生什么事?
答案:这是一个典型的递归问题。一旦所有的妻子都知道至少有一个男人出轨,我们就可以按递归方式来看待这个流程。先让我们假设只有一个丈夫偷情。则他的妻子见不到任何偷情的男人,因此知道这个人就是自己丈夫,她当天就会杀了他。假如有两个丈夫偷情,则他俩的妻子只知道不是自己丈夫的那一个男人偷情。因此她会等上一天看那个人有没有被杀死。假如第一天没人被杀死,她就能确定她自己的丈夫也偷了情。依此类推,假如有100个丈夫偷情,则他们能安全活上99 天,直到100天时,所有妻子把他们全都杀死。
11、假设在一段高速公路上,30分钟之内见到汽车经过的概率是0.95。那么,在10分钟内见到汽车经过的概率是多少?(假设缺省概率固定)
答案:这题的关键在于0.95是见到一辆或多辆汽车的概率,而不是仅见到一辆汽车的概率。在30分钟内,见不到任何车辆的概率为0.05。因此在10分钟内见不到任何车辆的概率是这个值的立方根,而在10分钟内见到一辆车的概率则为1减去此立方根,也就是大约63%。
12.有四个人要在夜里穿过一条悬索桥回到宿营地。可是他们只有一支手电,电池只够再亮17分钟。过桥必须要有手电,否则太危险。桥最多只能承受两个人 同时通过的重量。这四个人的过桥速度都不一样:一个需要1分钟,一个需要2分钟,一个需要5分钟,还有一个需要10分钟。他们如何才能在17分钟之内全部 过桥?
答案:1和2一起过(2分钟);1返回(3分钟);5和10一起过(13分钟);2返回(15分钟);1和2一起过(17分钟)。全体安全过桥。
或者1和2一起过(2分钟);2返回(4分钟);5和10一起过(14分钟);1返回(15分钟);1和2一起过(17分钟)。
13.为1万亿个数排序需要多长时间?请说出一个靠谱的估计。
答案:这又是一个没有标准答案的题目。目的是考察被面试者的创造性。我们倾向于两位读者给出的简单答案:用归并排序法(Merge Sort)排序。平均情况下为O(1,000,000,000,000 Log 1,000,000,000,000)。最差情况下为O(1,000,000,000,000 Log 1,000,000,000,000)。现在可以做到每秒10亿次的运算,所以大约应需要3000秒