题目:
We are stacking blocks to form a pyramid. Each block has a color which is a one letter string, like `'Z'`.
For every block of color `C` we place not in the bottom row, we are placing it on top of a left block of color `A` and right block of color `B`. We are allowed to place the block there only if `(A, B, C)` is an allowed triple.
We start with a bottom row of bottom
, represented as a single string. We also start with a list of allowed triples allowed
. Each allowed triple is represented as a string of length 3.
Return true if we can build the pyramid all the way to the top, otherwise false.
Example 1:
Input: bottom = "XYZ", allowed = ["XYD", "YZE", "DEA", "FFF"] Output: true Explanation: We can stack the pyramid like this: A / \ D E / \ / \ X Y Z This works because ('X', 'Y', 'D'), ('Y', 'Z', 'E'), and ('D', 'E', 'A') are allowed triples.
Example 2:
Input: bottom = "XXYX", allowed = ["XXX", "XXY", "XYX", "XYY", "YXZ"] Output: false Explanation: We can't stack the pyramid to the top. Note that there could be allowed triples (A, B, C) and (A, B, D) with C != D.
Note:
bottom
will be a string with length in range [2, 8]
.allowed
will have length in range [0, 200]
.{'A', 'B', 'C', 'D', 'E', 'F', 'G'}
.思路:
为了加速,我们首先建立一个哈希表,存储所有前缀的候选字符集。然后就采用DFS+ backtracking进行搜索了。这里面就是标准模板了,见下面的代码片段。有问题的可以直接留言。
代码:
class Solution {
public:
bool pyramidTransition(string bottom, vector& allowed) {
unordered_map> hash; // construct the hash map for acceleration
for (auto &s : allowed) {
hash[s.substr(0, 2)].push_back(s[2]);
}
string curr("");
return DFS(bottom, curr, 0, hash);
}
private:
bool DFS(string &prev, string &curr, int k,
unordered_map> &hash) {
if (prev.length() == 1) { // the total pyramid has been constructed
return true;
}
if (k + 1 == prev.length()) { // the current layer has been constructed
string next("");
return DFS(curr, next, 0, hash);
}
else {
string key = prev.substr(k, 2);
if (hash.count(key) == 0) { // no candidate
return false;
}
else { // try each candidate
const vector &chars = hash[key];
for (int i = 0; i < chars.size(); ++i) {
curr.push_back(chars[i]);
if (DFS(prev, curr, k + 1, hash)) {
return true;
}
curr.pop_back(); // backtracking
}
return false;
}
}
}
};