插入数学公式!!

知识储备

1.四则运算
$a+b$ 显示效果 a + b a+b a+b
$a-b$显示效果 a − b a-b ab
$a*b$ 显示效果 a ∗ b a*b ab
$\frac{a}{b}$ 显示效果 a b \frac{a}{b} ba

2.幂指对
$x^n$ 显示效果 x n x^n xn
$x^n$ 显示效果 x n x^n xn
$a^x$ 显示效果 a x a^x ax
$\log_a^b$ 显示效果 log ⁡ a b \log_a^b logab
$\ln x$ 显示效果 ln ⁡ x \ln x lnx

由此可以知道

上标用’^’,下标用’_’;
如果上标或者下表不止一个符号,请用’{}’括起来;

3.根号,省略号,向量,特殊符号
$\sqrt x$显示效果 x \sqrt x x
$\sqrt[n]{x}$ 显示效果 x n \sqrt[n]{x} nx
$\dots$ 显示效果 … \dots
$\vec x$显示效果 x ⃗ \vec x x
$\to$ 显示效果 → \to
$\alpha$ 显示效果 α \alpha α
$\theta_i$ 显示效果 θ i \theta_i θi
$a \geq b$ 显示效果 a ≥ b a \geq b ab
$a \leq b$ 显示效果 a ≤ b a \leq b ab

由此可以知道,键盘不能直接输入的符号,用’\英文单词’

4.累加,累乘
$\sum_{i=1}^{n} a_i^2x_i$ 显示效果 ∑ i = 1 n a i 2 x i \sum_{i=1}^{n} a_i^2x_i i=1nai2xi

$\displaystyle\sum_{i=1}^{n} a_i^2x_i$显示效果` ∑ i = 1 n a i 2 x i \displaystyle\sum_{i=1}^{n} a_i^2x_i i=1nai2xi

$\prod_{i=1}^{n} a_i^2x_i$ 显示效果 ∏ i = 1 n a i 2 x i \prod_{i=1}^{n} a_i^2x_i i=1nai2xi

$\displaystyle\prod_{i=1}^{n} a_i^2x_i$ 显示效果 ∏ i = 1 n a i 2 x i \displaystyle\prod_{i=1}^{n} a_i^2x_i i=1nai2xi

5.矩阵
$\begin{matrix} 1&2&3\\ 4&5&6\end{matrix}$ 显示效果 1 2 3 4 5 6 \begin{matrix} 1&2&3\\ 4&5&6\end{matrix} 142536
$\begin{bmatrix} 1&2&3\\ 4&5&6\end{bmatrix}$ 显示效果 [ 1 2 3 4 5 6 ] \begin{bmatrix} 1&2&3\\ 4&5&6\end{bmatrix} [142536]

$\begin{pmatrix} 1&2&3\\ 4&5&6\end{pmatrix}$ 显示效果 ( 1 2 3 4 5 6 ) \begin{pmatrix} 1&2&3\\ 4&5&6\end{pmatrix} (142536)

$\begin{bmatrix} 1&&\\ &1&\\&&1\end{bmatrix}$ 显示效果 [ 1 1 1 ] \begin{bmatrix} 1&&\\ &1&\\&&1\end{bmatrix} 111


6.公式中更改颜色
$\displaystyle\sum_{i=1}^{n}\color{red}{a_i^2}x_i$显示效果 ∑ i = 1 n a i 2 x i \displaystyle\sum_{i=1}^{n}\color{red}{a_i^2}x_i i=1nai2xi


示例
一个N阶线性常系数差分方程用下式表示:

y ( n ) = ∑ i = 0 M b i x ( n − i ) − ∑ i = 1 N a i y ( n − i ) y(n)=\sum _{i=0}^{M}b_{i}x(n-i)-\sum _{i=1}^{N}a_{i}y(n-i) y(n)=i=0Mbix(ni)i=1Naiy(ni)

或者

∑ i = 0 N a i y ( n − i ) = ∑ i = 0 M b i x ( n − i ) … … a 0 = 1 \sum _{i=0}^{N}a_{i}y(n-i) = \sum _{i=0}^{M}b_{i}x(n-i)\dots\dots a_{0}=1 i=0Naiy(ni)=i=0Mbix(ni)a0=1

其代码分别为
$y(n)=\sum _{i=0}^{M}b_{i}x(n-i)-\sum _{i=1}^{N}a_{i}y(n-i)$ $\sum _{i=0}^{N}a_{i}y(n-i) = \sum _{i=0}^{M}b_{i}x(n-i)\dots\dots a_{0}=1$

在线LaTex公式编辑器


转自:如何在CSDN博客上插入数学公式

你可能感兴趣的:(Markdown)