%matplotlib inline
import random
import numpy as np
import scipy as sp
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import statsmodels.api as sm
import statsmodels.formula.api as smf
sns.set_context("talk")
Anscombe's quartet comprises of four datasets, and is rather famous. Why? You'll find out in this exercise.
anascombe = pd.read_csv('data/anscombe.csv')
anascombe.head()
For each of the four datasets...
# your code here
Using Seaborn, visualize all four datasets.
hint: use sns.FacetGrid combined with plt.scatter
代码:
import random
import numpy as np
import scipy as sp
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import statsmodels.api as sm
import statsmodels.formula.api as smf
import statistics as sta
import scipy.stats.stats as stats
anscombe = sns.load_dataset("anscombe")
a = anscombe.x[:10].values
b = anscombe.x[11:21].values
c = anscombe.x[22:32].values
d = anscombe.x[33:43].values
a1 = np.mean(a)
print("The mean of x in I: ", a1)
b1 = np.mean(b)
print("The mean of x in II: ", b1)
c1 = np.mean(c)
print("mean of x in III: ", c1)
d1= np.mean(d)
print("mean of x in IV: ", d1)
a2=sta.variance(a)
print("The variance of x in I: ", a2)
b2=sta.variance(b)
print("The variance of x in I: ", b2)
c2=sta.variance(c)
print("The variance of x in I: ", c2)
d2=sta.variance(d)
print("The variance of x in I: ", d2)
m = anscombe.y[:10].values
n = anscombe.y[11:21].values
p = anscombe.y[22:32].values
q = anscombe.y[33:43].values
m1 = np.mean(m)
print("The mean of x in I: ", m1)
n1 = np.mean(n)
print("The mean of x in II: ", n1)
p1 = np.mean(p)
print("mean of x in III: ", p1)
q1= np.mean(q)
print("mean of x in IV: ", q1)
m2=sta.variance(m)
print("The variance of x in I: ", m2)
n2=sta.variance(n)
print("The variance of x in I: ", n2)
p2=sta.variance(p)
print("The variance of x in I: ", p2)
q2=sta.variance(q)
print("The variance of x in I: ", q2)
cof_I = stats.pearsonr(a, m)[0]
cof_II = stats.pearsonr(b, n)[0]
cof_III = stats.pearsonr(c, p)[0]
cof_IV = stats.pearsonr(d, q)[0]
print("correlation coefficient of I: ", cof_I)
print("correlation coefficient of II: ", cof_II)
print("correlation coefficient of III: ", cof_III)
print("correlation coefficient of IV: ", cof_IV)
X_I = sm.add_constant(a)
model_I = sm.OLS(m, X_I)
result_I = model_I.fit()
params_I = result_I.params
print("DatasetI: y =", params_I[0], "+", params_I[1], "* x")
X_II = sm.add_constant(b)
model_II = sm.OLS(n, X_II)
result_II = model_II.fit()
params_II = result_II.params
print("DatasetII: y =", params_II[0], "+", params_II[1], "* x")
X_III = sm.add_constant(c)
model_III = sm.OLS(p, X_III)
result_III = model_III.fit()
params_III = result_III.params
print("DatasetIII: y =", params_III[0], "+", params_III[1], "* x")
X_IV = sm.add_constant(d)
model_IV = sm.OLS(q, X_IV)
result_IV = model_IV.fit()
params_IV = result_IV.params
print("DatasetIV: y =", params_IV[0], "+", params_IV[1], "* x")
sns.set(style='whitegrid')
g = sns.FacetGrid(anscombe, col="dataset", hue="dataset", size=3)
g.map(plt.scatter, 'x', 'y')
plt.show()