TensorFlow 初体验--基本操作的学习

如果您对机器学习与人工智能感兴趣,这里极力推荐学习教程:莫烦 python
教程以视频形式手把手敲代码,是我学习过的最好教程!

session 会话


import tensorflow as tf

matrix1 = tf.constant([[3,3]])# 常量,12列矩阵
matrix2 = tf.constant([[2],
                       [2]])# 常量21列矩阵
                       product = tf.matmul(matrix1,matrix2)# 矩阵乘法,matrix multiply----np.dot(m1,m2)

执行方式一

sess = tf.Session()
result = sess.run(product)
print(result)
sess.close()# 有此句更为规范

运行结果:

[[12]]

执行方式二

with tf.Session() as sess:# 运行到最后自动close
    result2 = sess.run(product)
    print(result2)

运行结果:

[[12]]


variable 变量

import tensorflow as tf

state = tf.Variable(0,name = 'counter')

print(state.name)

运行结果:

counter:0

one = tf.constant(1)

new_value = tf.add(state,one)# 常量+变量=变量

updata = tf.assign(state,new_value)# 将new_value加载到state上

init = tf.global_variables_initializer()# 如果定义了变量,必须有此句

with tf.Session() as sess:
    sess.run(init)
    for _ in range(3):
        sess.run(updata)
        print(sess.run(state))

运行结果:

1
2
3


placeholder 传入值

该值随时可变,并可传入,类似于自变量

import tensorflow as tf

input1 = tf.placeholder(tf.float32)
input2 = tf.placeholder(tf.float32)

output = tf.multiply(input1,input2)

with tf.Session() as sess:
    print(sess.run(output,feed_dict={input1:[7.],input2:[2.]}))# run时传入值,使用feed_dict字典形式

运行结果:

[14.]

你可能感兴趣的:(人工智能,python,TensorFlow)