- 大规异构集群 混合并行分布式训练系统,解决算力不均衡问题 HETHUB
爱串门的小马驹
万卡大规模集群大模型训练异构集群大规模集群分布式大模型训练
视频教程在这:3.2大规模异构集群,混合并行分布式系统,解释算力不均衡问题HETHUB_哔哩哔哩_bilibili一、大规模异构集群出现的原因:同一种GPU数量有限难以构建大规模集群:训练大规模模型依赖于大量的计算资源。例如,训练GPT-4模型(1.8万亿个参数)需要25000个A100GPU。用一种GPU加速器构建大规模集群是一个挑战。使用多种类型的GPU加速器构建大规模集群是解决同构GPU加速
- dubbo服务META-INF.dubbo文件夹作用
zhglhy
dubbojavaapache
META-INF.dubbo文件夹是ApacheDubbo框架中的一个重要目录,通常用于存放Dubbo的SPI(ServiceProviderInterface)扩展配置文件。Dubbo是一个高性能的JavaRPC框架,支持分布式服务治理,而SPI机制是Dubbo实现可扩展性的核心设计之一。1.SPI机制简介SPI是Java提供的一种服务发现机制,允许框架在运行时动态加载实现类。Dubbo对其进行
- MongoDB
z小天才b
MongoDBmongodb数据库
一、MongoDB简介1.1什么是MongoDB?MongoDB是一个基于分布式文件存储的开源NoSQL数据库系统,由C++语言编写,旨在为Web应用提供可扩展的高性能数据存储解决方案。MongoDB将数据存储为一个文档,数据结构由键值对组成,类似于JSON对象,字段值可以包含其他文档、数组及文档数组。1.2MongoDB的核心特性文档型数据库:数据以BSON(BinaryJSON)格式存储灵活的
- 存储系统怎么选?分布式存储vs.集中式存储的区别在哪?
东方念
分布式
在当今的数字化时代,安防监控已成为维护社会秩序和公共安全的重要手段。随着监控设备的普及和监控数据的不断增加,如何高效、安全地存储和管理这些视频数据,成为了安防行业面临的重要挑战。EasyCVR视频存储系统凭借其卓越的性能和灵活的架构,为安防行业提供了一个理想的解决方案。一、EasyCVR视频监控存核心优势EasyCVR视频汇聚平台是一个具备高度集成化、智能化的视频监控汇聚管理平台,拥有远程视频监控
- Q&A:备份产品的存储架构采用集中式和分布式的优劣?
云祺vinchin
技术分享架构分布式网络运维大数据
分布式和集中式各有优劣,且这两者下面的存储类型也都不尽相同,从备份与恢复的数据层面来看,这两者存储相结合才是优解。众所周知,备份数据只存一份还只放在一个存储里是不现实的。假设把备份数据访问频率、生命周期等参数分为三个等级(热、温、冷)。很显然,以分布式存储的优点用来存放热备份数据是非常合适的,能满足大规模数据在备份与恢复时的高吞吐需求,同时也能提供并行计算的能力,提供高效的目标端数据压缩和数据重删
- LLMs之minimind:minimind源码解读(pretrain.py)——实现基于Transformer架构的大规模语言模型预训练及wandb监控—支持余弦退火学习率调度/分布式预训练/自动混
一个处女座的程序猿
NLP/LLMsCaseCodetransformerminimind预训练
LLMs之minimind:minimind源码解读(pretrain.py)——实现基于Transformer架构的大规模语言模型预训练及wandb监控—支持余弦退火学习率调度/分布式预训练/自动混合精度优化/梯度累积/梯度裁剪/定期保存模型目录minimind源码解读(pretrain.py)——实现基于Transformer架构的大规模语言模型预训练及wandb监控—支持余弦退火学习率调度/
- Elasticsearch + Docker:实现容器化部署指南
IT成长日记
elasticsearchdocker容器化部署
Elasticsearch是一款强大的分布式搜索和分析引擎,广泛应用于日志分析、全文检索、实时数据分析等场景。而Docker作为一种轻量级的容器化技术,能够帮助开发者快速部署和管理应用。将Elasticsearch与Docker结合,不仅可以简化部署流程,还能提高资源利用率和系统可维护性。1环境准备1.1安装Docker安装操作请参考:Docker入门指南:1分钟搞定安装+常用命令,轻松入门容器化
- 从零到一:Redis Cluster部署配置全流程详解,轻松搞定高可用分布式缓存!
IT成长日记
#数据库技术解析与应用实践RedisClusterredis缓存集群
RedisCluster是Redis官方提供的分布式解决方案,它通过数据分片(Sharding)和主从复制(Replication)来实现高可用性和横向扩展。RedisCluster能够在多个节点之间自动分配数据,并且在节点故障时自动进行故障转移,确保系统的高可用性。本文将详细介绍RedisCluster的部署和配置全流程,帮助读者快速搭建一个高可用的Redis集群。1RedisCluster概述
- 使用Spring Boot实现分布式任务调度
weixin_836869520
springboot分布式后端
使用SpringBoot实现分布式任务调度大家好,我是微赚淘客系统3.0的小编,是个冬天不穿秋裤,天冷也要风度的程序猿!一、SpringBoot与分布式任务调度概述在分布式系统中,任务调度是一项关键的技术,它能够有效地管理和调度系统中的各种任务,确保任务能够按时执行并具有高可用性和可靠性。SpringBoot作为Java领域流行的开发框架,提供了多种实现分布式任务调度的解决方案。二、SpringB
- 在Spring Boot中实现分布式任务调度
微赚淘客系统开发者
springboot分布式后端
在SpringBoot中实现分布式任务调度大家好,我是微赚淘客系统3.0的小编,也是冬天不穿秋裤,天冷也要风度的程序猿!使用SpringBoot与Quartz实现分布式任务调度1.引入依赖在SpringBoot项目中,首先需要引入Quartz和相关依赖:org.springframework.bootspring-boot-starter-quartz2.配置Quartz在SpringBoot的配
- 基于 Redis 的分布式锁实现与优化
Blossom.118
分布式系统与高性能计算领域redis分布式数据库python3.11算法数据结构推荐算法
在分布式系统中,锁机制是保障数据一致性和并发控制的关键技术之一。Redis作为一种高性能的内存数据库,常被用于实现分布式锁。本文将详细介绍基于Redis的分布式锁的实现原理、代码示例以及优化策略,帮助读者更好地理解和应用这一技术。一、分布式锁的概念与需求在单机系统中,锁的实现相对简单,可以通过操作系统的同步机制或编程语言提供的锁机制来完成。然而,在分布式系统中,多个进程或线程可能运行在不同的机器上
- 在Spring Boot中集成分布式任务调度
微赚淘客机器人开发者联盟@聚娃科技
springboot分布式后端
在SpringBoot中集成分布式任务调度大家好,我是微赚淘客系统3.0的小编,也是冬天不穿秋裤,天冷也要风度的程序猿!1.引言分布式任务调度是现代企业应用中常见的需求,特别是在微服务架构中,不同服务可能需要定时执行任务、定时触发某些业务逻辑或者周期性地处理数据。SpringBoot提供了多种方式来实现分布式任务调度,包括使用Quartz、Spring自带的任务调度以及集成第三方调度中心等。2.使
- 深入解析 Redis 实现分布式锁的最佳实践
煜bart
机器人redispython
前言在分布式系统中,多个进程或线程可能会同时访问同一个共享资源,这就可能导致数据不一致的问题。为了保证数据的一致性,我们通常需要使用分布式锁。Redis作为高性能的内存数据库,提供了一种简单高效的方式来实现分布式锁。本文将深入探讨如何使用Redis来实现分布式锁,并介绍一些优化技巧和最佳实践。---一、为什么需要分布式锁?在单机环境下,我们可以使用synchronized、Lock等方式来控制并发
- 基于Spring Boot的分布式任务调度实践
Blossom.118
分布式系统与高性能计算领域wpfspringbootjava后端分布式spring开发语言
在现代的分布式系统中,任务调度是一个常见的需求。无论是定时任务的执行,还是根据业务逻辑动态触发的任务,都需要一个高效、可靠的调度框架来管理。SpringBoot作为目前最流行的Java开发框架之一,提供了强大的依赖管理和快速开发的能力,结合分布式任务调度框架,可以极大地提升开发效率和系统的可维护性。本文将介绍如何基于SpringBoot实现一个分布式任务调度系统,主要涉及Elastic-Job框架
- 鸿蒙开发工程师简历项目撰写全攻略
谢道韫689
鸿蒙随笔harmonyos华为
一、项目结构的黄金法则建议采用「4+1」结构:项目背景(业务价值)+技术架构(鸿蒙特性)+核心实现(技术难点)+个人贡献(量化成果)+附加价值(延伸影响)二、鸿蒙特色技术点提炼技巧鸿蒙核心技术技术维度具体实现案例量化成果示例分布式软总线自定义协议实现家电设备低功耗连接连接成功率从89%提升至97%ArkUI框架基于TS扩展实现动态UI模板引擎开发效率提升40%,代码量减少60%原子化服务实现天气服
- 分布式中间件:Redisson 入门和分布式锁
顾北辰20
分布式中间件分布式中间件redisson
分布式中间件:Redisson入门和分布式锁在分布式系统的开发中,处理并发问题是一个常见且具有挑战性的任务。为了确保数据的一致性和完整性,我们常常需要使用分布式锁。Redisson作为一个强大的分布式Java驻内存数据网格(In-MemoryDataGrid)中间件,为我们提供了简单且高效的分布式锁解决方案。本文将带你入门Redisson,并介绍如何使用它实现分布式锁。1.引入Redisson依赖
- TensorFlow和Pytorch在功能上的区别以及优势
Honeysea_70
#算法tensorflowpytorch人工智能
功能上的区别1.计算图TensorFlow:使用静态计算图(StaticGraph)。在运行模型之前,需要先构建完整的计算图,然后通过会话(Session)运行图。优点是性能优化更高效,适合大规模分布式训练和生产环境部署。缺点是调试相对复杂,因为计算图的构建和运行是分离的。PyTorch:使用动态计算图(DynamicGraph)。计算图是动态构建和执行的,每次迭代都会重新构建图。优点是调试方便,
- 鸿蒙HarmonyOS应用开发 |鸿蒙技术分享HarmonyOS Next 深度解析:分布式能力与跨设备协作实战
一键难忘
harmonyos分布式华为HarmonyOSNext
鸿蒙技术分享:HarmonyOSNext深度解析:分布式能力与跨设备协作实战随着万物互联时代的到来,操作系统作为连接设备、应用与用户体验的核心,扮演着不可或缺的角色。华为最新发布的HarmonyOSNext(鸿蒙操作系统下一代版本)不仅在技术架构上实现了颠覆性升级,更在生态体验上迈向了一个新的高度。本文将从技术架构、生态优势和开发实践三个方面深入探讨HarmonyOSNext的技术特点,并通过一个
- 定时任务调度框架xxl-job与quartz的区别
java程序员CC
java
XXL-Job和Quartz都是Java项目中常用的定时任务框架,它们有以下几点区别:xxl-job和Quartz都是用于任务调度的开源框架,它们之间有一些区别,主要体现在以下几个方面:语言支持:Quartz主要是基于Java的任务调度框架,支持Java语言。xxl-job是一个分布式任务调度平台,它提供了Java版本的调度中心,同时还提供了Python、PHP等语言的任务执行器,因此支持多种语言
- 鸿蒙系统架构解析:深入理解分层设计与功能实现
斯陀含
harmonyos架构华为
鸿蒙系统架构解析:深入理解分层设计与功能实现鸿蒙操作系统(HarmonyOS)是华为推出的全新分布式操作系统,其独特的架构设计是其核心竞争力之一。本文将深入探讨鸿蒙系统的分层架构,从内核层到应用层,逐层剖析其功能和作用,并结合实例帮助读者更好地理解鸿蒙系统的设计理念。一、鸿蒙系统架构概览鸿蒙系统采用分层架构设计,将系统划分为四个层次:内核层、系统服务层、框架层和应用层。这种分层架构具有以下优势:模
- 分布式限流方案:基于 Redis 的令牌桶算法实现
代码怪兽大作战
后端分布式redis算法java令牌桶接口限流
分布式限流方案:基于Redis的令牌桶算法实现前言一、原理介绍:令牌桶算法二、分布式限流的设计思路三、代码实现四、方案优缺点五、适用场景总结前言在分布式场景下,接口限流变得更加复杂。传统的单机限流方式难以满足跨节点的限流需求,因此需要一种分布式限流方案。这里介绍一种基于Redis和Redisson实现的令牌桶算法分布式限流方案。一、原理介绍:令牌桶算法令牌桶算法是一种用于控制流量的经典算法,其基本
- 阿里云国际站代理商:为什么边缘计算需要分布式防护?
聚搜云—服务器分享
阿里云边缘计算分布式
1.边缘计算的分布式特性边缘计算将数据处理和存储从集中式的云中心迁移到了靠近数据源的边缘节点,这些节点通常分布广泛且数量众多。这种分布式架构虽然带来了低延迟、高带宽和高可靠性的优势,但也增加了安全防护的复杂性。因为每个边缘节点都可能成为潜在的攻击目标,且攻击面随着节点数量的增加而扩大。2.安全风险的增加数据泄露风险:边缘节点处理和存储用户数据,如果这些节点的安全措施不足,数据可能会被窃取或泄露。物
- HarmonyOS Next 企业级分布式办公应用实战:构建高效协同的办公新生态
lyc233333
harmonyos分布式华为
在数字化办公浪潮汹涌的当下,企业对于高效、便捷且协同性强的办公应用需求愈发迫切。华为鸿蒙HarmonyOSNext系统凭借其先进的分布式技术,为打造创新型企业级分布式办公应用提供了坚实的基础。本文将基于实际开发经验,深入剖析如何利用HarmonyOSNext构建企业级分布式办公应用,涵盖从需求分析到系统架构搭建,再到核心功能实现以及性能优化等关键环节。一、办公应用需求与系统架构搭建(一)企业级分布
- MDC-Mapped Diagnostic Context(映射诊断上下文)
NEUMaple
微服务springbootjavaMDC
MDC,全称为MappedDiagnosticContext(映射诊断上下文),是SLF4J(SimpleLoggingFacadeforJava)提供的一种机制,用于在多线程应用中存储和管理与特定线程相关的上下文信息。这种机制特别适用于需要跨多个方法调用或服务边界传递诊断信息的场景,例如跟踪分布式系统中的请求流。MDC的主要用途日志关联:在分布式系统或多线程应用中,MDC可以用来携带一些上下文信
- DeepSeek-R1核心技术深度解密:动态专家网络与多维注意力融合的智能架构实现全解析
Coderabo
DeepSeekR1模型企业级应用架构DeepSeek-R1
DeepSeek-R1智能架构核心技术揭秘:从动态路由到分布式训练的完整实现指南一、DeepSeek-R1架构设计原理1.1动态专家混合系统DeepSeek-R1采用改进型MoE(MixtureofExperts)架构,核心公式表达为:y=∑i=1nG(x
- Spring Boot与Hazelcast整合教程
嘵奇
提升自己springboot后端java
精心整理了最新的面试资料和简历模板,有需要的可以自行获取点击前往百度网盘获取点击前往夸克网盘获取SpringBoot与Hazelcast整合教程简介Hazelcast是一个开源的内存数据网格(IMDG),提供分布式缓存、计算和数据结构功能。与SpringBoot整合后,可以快速实现分布式缓存、会话共享等功能。本教程将演示如何将Hazelcast嵌入SpringBoot应用。环境准备JDK17+Sp
- ZooKeeper集群高可用性测试与实践:从规划到故障模拟
磐基Stack专业服务团队
Zookeeperzookeeper可用性测试
#作者:任少近文章目录ZooKeeper集群环境规划1.集群数据一致性测试2.集群节点故障测试ZooKeeper集群高可用性测试的主要目的是确保在分布式环境中,ZooKeeper服务能够持续提供一致性和高可用性的协调服务。ZooKeeper集群环境规划节点ipZooKeeper版本java版本对外端口集群通信端口集群选举端口192.168.x.xZooKeeper-3.6.11.8.0_33221
- 深入理解 Kafka 的 ConsumerRebalanceListener
t0_54coder
编程问题解决手册kafkalinq分布式
深入理解Kafka的ConsumerRebalanceListener在分布式系统中,数据的一致性和可靠性是至关重要的。ApacheKafka作为一个流行的分布式流处理平台,提供了强大的数据传输和处理能力。在Kafka中,消费者组(ConsumerGroup)的概念允许多个消费者实例共同处理一个主题的数据。然而,当消费者实例的个数发生变化时,如何确保数据的平衡和一致性呢?这就引出了我们今天要讨论的
- oceanbase与mysql性能对比_金融业分布式数据库:TDSQL、HotDB、OceanBase等原理、POC性能对比及选择是......
高中物理宋老师
本帖最后由Amygo于2020-3-1501:33编辑1、分布式的实现,是通过中间件实现分布式,还是源码级别引入分布式算法实现的?解答:(1)分布式数据库是至少由计算节点、存储节点、管理平台、备份还原程序四个部分组成,从数据库系统理论知识上说分成:全局自治和场地自治,也粗略认为:全局可理解为计算节点、场地可理解为存储节点(2)这个问题的标题“中间件实现分布式还是源码级别引入分布式算法”这个说法存在
- 本地锁 vs 分布式锁详解
重生之我在成电转码
java系统锁分布式锁
一、什么是本地锁?本地锁(LocalLock)指的是单机环境下使用Java/JVM自带的锁机制,实现线程之间的互斥和同步。✅本地锁的常见实现:锁类型说明synchronizedJVM内置,修饰方法或代码块,重量级锁,自动释放ReentrantLockJUC提供,支持可重入、可中断、公平锁、Condition等StampedLock支持读写锁和乐观读,适合读多写少场景ReadWriteLock读写分
- LeetCode[Math] - #66 Plus One
Cwind
javaLeetCode题解AlgorithmMath
原题链接:#66 Plus One
要求:
给定一个用数字数组表示的非负整数,如num1 = {1, 2, 3, 9}, num2 = {9, 9}等,给这个数加上1。
注意:
1. 数字的较高位存在数组的头上,即num1表示数字1239
2. 每一位(数组中的每个元素)的取值范围为0~9
难度:简单
分析:
题目比较简单,只须从数组
- JQuery中$.ajax()方法参数详解
AILIKES
JavaScriptjsonpjqueryAjaxjson
url: 要求为String类型的参数,(默认为当前页地址)发送请求的地址。
type: 要求为String类型的参数,请求方式(post或get)默认为get。注意其他http请求方法,例如put和 delete也可以使用,但仅部分浏览器支持。
timeout: 要求为Number类型的参数,设置请求超时时间(毫秒)。此设置将覆盖$.ajaxSetup()方法的全局
- JConsole & JVisualVM远程监视Webphere服务器JVM
Kai_Ge
JVisualVMJConsoleWebphere
JConsole是JDK里自带的一个工具,可以监测Java程序运行时所有对象的申请、释放等动作,将内存管理的所有信息进行统计、分析、可视化。我们可以根据这些信息判断程序是否有内存泄漏问题。
使用JConsole工具来分析WAS的JVM问题,需要进行相关的配置。
首先我们看WAS服务器端的配置.
1、登录was控制台https://10.4.119.18
- 自定义annotation
120153216
annotation
Java annotation 自定义注释@interface的用法 一、什么是注释
说起注释,得先提一提什么是元数据(metadata)。所谓元数据就是数据的数据。也就是说,元数据是描述数据的。就象数据表中的字段一样,每个字段描述了这个字段下的数据的含义。而J2SE5.0中提供的注释就是java源代码的元数据,也就是说注释是描述java源
- CentOS 5/6.X 使用 EPEL YUM源
2002wmj
centos
CentOS 6.X 安装使用EPEL YUM源1. 查看操作系统版本[root@node1 ~]# uname -a Linux node1.test.com 2.6.32-358.el6.x86_64 #1 SMP Fri Feb 22 00:31:26 UTC 2013 x86_64 x86_64 x86_64 GNU/Linux [root@node1 ~]#
- 在SQLSERVER中查找缺失和无用的索引SQL
357029540
SQL Server
--缺失的索引
SELECT avg_total_user_cost * avg_user_impact * ( user_scans + user_seeks ) AS PossibleImprovement ,
last_user_seek ,
 
- Spring3 MVC 笔记(二) —json+rest优化
7454103
Spring3 MVC
接上次的 spring mvc 注解的一些详细信息!
其实也是一些个人的学习笔记 呵呵!
- 替换“\”的时候报错Unexpected internal error near index 1 \ ^
adminjun
java“\替换”
发现还是有些东西没有刻子脑子里,,过段时间就没什么概念了,所以贴出来...以免再忘...
在拆分字符串时遇到通过 \ 来拆分,可是用所以想通过转义 \\ 来拆分的时候会报异常
public class Main {
/*
- POJ 1035 Spell checker(哈希表)
aijuans
暴力求解--哈希表
/*
题意:输入字典,然后输入单词,判断字典中是否出现过该单词,或者是否进行删除、添加、替换操作,如果是,则输出对应的字典中的单词
要求按照输入时候的排名输出
题解:建立两个哈希表。一个存储字典和输入字典中单词的排名,一个进行最后输出的判重
*/
#include <iostream>
//#define
using namespace std;
const int HASH =
- 通过原型实现javascript Array的去重、最大值和最小值
ayaoxinchao
JavaScriptarrayprototype
用原型函数(prototype)可以定义一些很方便的自定义函数,实现各种自定义功能。本次主要是实现了Array的去重、获取最大值和最小值。
实现代码如下:
<script type="text/javascript">
Array.prototype.unique = function() {
var a = {};
var le
- UIWebView实现https双向认证请求
bewithme
UIWebViewhttpsObjective-C
什么是HTTPS双向认证我已在先前的博文 ASIHTTPRequest实现https双向认证请求
中有讲述,不理解的读者可以先复习一下。本文是用UIWebView来实现对需要客户端证书验证的服务请求,网上有些文章中有涉及到此内容,但都只言片语,没有讲完全,更没有完整的代码,让人困扰不已。但是此知
- NoSQL数据库之Redis数据库管理(Redis高级应用之事务处理、持久化操作、pub_sub、虚拟内存)
bijian1013
redis数据库NoSQL
3.事务处理
Redis对事务的支持目前不比较简单。Redis只能保证一个client发起的事务中的命令可以连续的执行,而中间不会插入其他client的命令。当一个client在一个连接中发出multi命令时,这个连接会进入一个事务上下文,该连接后续的命令不会立即执行,而是先放到一个队列中,当执行exec命令时,redis会顺序的执行队列中
- 各数据库分页sql备忘
bingyingao
oraclesql分页
ORACLE
下面这个效率很低
SELECT * FROM ( SELECT A.*, ROWNUM RN FROM (SELECT * FROM IPAY_RCD_FS_RETURN order by id desc) A ) WHERE RN <20;
下面这个效率很高
SELECT A.*, ROWNUM RN FROM (SELECT * FROM IPAY_RCD_
- 【Scala七】Scala核心一:函数
bit1129
scala
1. 如果函数体只有一行代码,则可以不用写{},比如
def print(x: Int) = println(x)
一行上的多条语句用分号隔开,则只有第一句属于方法体,例如
def printWithValue(x: Int) : String= println(x); "ABC"
上面的代码报错,因为,printWithValue的方法
- 了解GHC的factorial编译过程
bookjovi
haskell
GHC相对其他主流语言的编译器或解释器还是比较复杂的,一部分原因是haskell本身的设计就不易于实现compiler,如lazy特性,static typed,类型推导等。
关于GHC的内部实现有篇文章说的挺好,这里,文中在RTS一节中详细说了haskell的concurrent实现,里面提到了green thread,如果熟悉Go语言的话就会发现,ghc的concurrent实现和Go有点类
- Java-Collections Framework学习与总结-LinkedHashMap
BrokenDreams
LinkedHashMap
前面总结了java.util.HashMap,了解了其内部由散列表实现,每个桶内是一个单向链表。那有没有双向链表的实现呢?双向链表的实现会具备什么特性呢?来看一下HashMap的一个子类——java.util.LinkedHashMap。
- 读《研磨设计模式》-代码笔记-抽象工厂模式-Abstract Factory
bylijinnan
abstract
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
package design.pattern;
/*
* Abstract Factory Pattern
* 抽象工厂模式的目的是:
* 通过在抽象工厂里面定义一组产品接口,方便地切换“产品簇”
* 这些接口是相关或者相依赖的
- 压暗面部高光
cherishLC
PS
方法一、压暗高光&重新着色
当皮肤很油又使用闪光灯时,很容易在面部形成高光区域。
下面讲一下我今天处理高光区域的心得:
皮肤可以分为纹理和色彩两个属性。其中纹理主要由亮度通道(Lab模式的L通道)决定,色彩则由a、b通道确定。
处理思路为在保持高光区域纹理的情况下,对高光区域着色。具体步骤为:降低高光区域的整体的亮度,再进行着色。
如果想简化步骤,可以只进行着色(参看下面的步骤1
- Java VisualVM监控远程JVM
crabdave
visualvm
Java VisualVM监控远程JVM
JDK1.6开始自带的VisualVM就是不错的监控工具.
这个工具就在JAVA_HOME\bin\目录下的jvisualvm.exe, 双击这个文件就能看到界面
通过JMX连接远程机器, 需要经过下面的配置:
1. 修改远程机器JDK配置文件 (我这里远程机器是linux).
 
- Saiku去掉登录模块
daizj
saiku登录olapBI
1、修改applicationContext-saiku-webapp.xml
<security:intercept-url pattern="/rest/**" access="IS_AUTHENTICATED_ANONYMOUSLY" />
<security:intercept-url pattern=&qu
- 浅析 Flex中的Focus
dsjt
htmlFlexFlash
关键字:focus、 setFocus、 IFocusManager、KeyboardEvent
焦点、设置焦点、获得焦点、键盘事件
一、无焦点的困扰——组件监听不到键盘事件
原因:只有获得焦点的组件(确切说是InteractiveObject)才能监听到键盘事件的目标阶段;键盘事件(flash.events.KeyboardEvent)参与冒泡阶段,所以焦点组件的父项(以及它爸
- Yii全局函数使用
dcj3sjt126com
yii
由于YII致力于完美的整合第三方库,它并没有定义任何全局函数。yii中的每一个应用都需要全类别和对象范围。例如,Yii::app()->user;Yii::app()->params['name'];等等。我们可以自行设定全局函数,使得代码看起来更加简洁易用。(原文地址)
我们可以保存在globals.php在protected目录下。然后,在入口脚本index.php的,我们包括在
- 设计模式之单例模式二(解决无序写入的问题)
come_for_dream
单例模式volatile乱序执行双重检验锁
在上篇文章中我们使用了双重检验锁的方式避免懒汉式单例模式下由于多线程造成的实例被多次创建的问题,但是因为由于JVM为了使得处理器内部的运算单元能充分利用,处理器可能会对输入代码进行乱序执行(Out Of Order Execute)优化,处理器会在计算之后将乱序执行的结果进行重组,保证该
- 程序员从初级到高级的蜕变
gcq511120594
框架工作PHPandroidhtml5
软件开发是一个奇怪的行业,市场远远供不应求。这是一个已经存在多年的问题,而且随着时间的流逝,愈演愈烈。
我们严重缺乏能够满足需求的人才。这个行业相当年轻。大多数软件项目是失败的。几乎所有的项目都会超出预算。我们解决问题的最佳指导方针可以归结为——“用一些通用方法去解决问题,当然这些方法常常不管用,于是,唯一能做的就是不断地尝试,逐个看看是否奏效”。
现在我们把淫浸代码时间超过3年的开发人员称为
- Reverse Linked List
hcx2013
list
Reverse a singly linked list.
/**
* Definition for singly-linked list.
* public class ListNode {
* int val;
* ListNode next;
* ListNode(int x) { val = x; }
* }
*/
p
- Spring4.1新特性——数据库集成测试
jinnianshilongnian
spring 4.1
目录
Spring4.1新特性——综述
Spring4.1新特性——Spring核心部分及其他
Spring4.1新特性——Spring缓存框架增强
Spring4.1新特性——异步调用和事件机制的异常处理
Spring4.1新特性——数据库集成测试脚本初始化
Spring4.1新特性——Spring MVC增强
Spring4.1新特性——页面自动化测试框架Spring MVC T
- C# Ajax上传图片同时生成微缩图(附Demo)
liyonghui160com
1.Ajax无刷新上传图片,详情请阅我的这篇文章。(jquery + c# ashx)
2.C#位图处理 System.Drawing。
3.最新demo支持IE7,IE8,Fir
- Java list三种遍历方法性能比较
pda158
java
从c/c++语言转向java开发,学习java语言list遍历的三种方法,顺便测试各种遍历方法的性能,测试方法为在ArrayList中插入1千万条记录,然后遍历ArrayList,发现了一个奇怪的现象,测试代码例如以下:
package com.hisense.tiger.list;
import java.util.ArrayList;
import java.util.Iterator;
- 300个涵盖IT各方面的免费资源(上)——商业与市场篇
shoothao
seo商业与市场IT资源免费资源
A.网站模板+logo+服务器主机+发票生成
HTML5 UP:响应式的HTML5和CSS3网站模板。
Bootswatch:免费的Bootstrap主题。
Templated:收集了845个免费的CSS和HTML5网站模板。
Wordpress.org|Wordpress.com:可免费创建你的新网站。
Strikingly:关注领域中免费无限的移动优
- localStorage、sessionStorage
uule
localStorage
W3School 例子
HTML5 提供了两种在客户端存储数据的新方法:
localStorage - 没有时间限制的数据存储
sessionStorage - 针对一个 session 的数据存储
之前,这些都是由 cookie 完成的。但是 cookie 不适合大量数据的存储,因为它们由每个对服务器的请求来传递,这使得 cookie 速度很慢而且效率也不