- 芯片的未来发展趋势
iccnewer
2024年,该行业将专注于AI/ML、RISC-V、量子、安全等发展趋势。今年年初,大多数人从未听说过生成式人工智能。现在整个世界都在竞相利用它,而这仅仅是个开始。量子计算、6G、智能基础设施等新市场领域专用处理正在加速对更快、更高效、更多数据的需求。与每隔几年等待下一个工艺节点的日子相比,未来几年的事件将与电话或汽车的引入一样重要。但可能不会只有一种创新技术,将会有很多技术一起以一种将让科技界惊
- docker学习整理
24k小善
java大数据云计算
一、Docker核心原理:像租房装修一样理解容器1.1容器vs虚拟机:合租vs买别墅虚拟机就像买别墅:每个别墅(虚拟机)自带独立地基(操作系统)、水电系统(系统资源),启动慢(分钟级)、资源占用大(GB级)[1][10]容器就像合租:大家共享小区基础设施(宿主机内核),但每个房间(容器)有自己的家具摆放(应用和依赖)。轻量(MB级)、秒级启动,还能随时搬走(迁移)[9]1.2镜像分层:乐高积木式打
- Python程序设计(入门)
xyyykx
python开发语言
目录一丶Python概述二丶Python数据类型三丶常用的进制四丶字符串型五丶程序控制结构六丶组合数据类型一丶Python概述Python是一种高级编程语言,由GuidovanRossum于1991年开发并发布。它具有简洁、易读、易学的语法特点,被广泛应用于多个领域,包括软件开发、数据科学、人工智能、网络编程等。以下是Python的一些主要特点和优势:简单易学:Python的语法简洁明了,易于理解
- LLM:软件测试的颠覆性力量
AI天才研究院
DeepSeekR1&大数据AI人工智能大模型AI大模型企业级应用开发实战计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
LLM:软件测试的颠覆性力量关键词:大语言模型(LLM)、软件测试、人工智能、测试自动化、测试效率、质量保证、测试革新1.背景介绍在当今快速发展的软件行业中,测试一直是确保产品质量的关键环节。随着人工智能技术的飞速进步,特别是大语言模型(LargeLanguageModels,简称LLM)的出现,软件测试领域正经历着前所未有的变革。LLM凭借其强大的自然语言处理能力和广泛的知识储备,正在重塑我们对
- Ret2syscall(超详细)
LuoYaFu
服务器算法运维
什么是系统调用?系统调用(SystemCall)是操作系统提供给应用程序的接口,允许应用程序请求操作系统内核执行某些特权操作。由于操作系统内核运行在更高的特权级别(如x86架构中的内核态),普通应用程序(运行在用户态)无法直接访问硬件资源或执行某些敏感操作(如文件读写、进程管理、网络通信等)。因此,应用程序需要通过系统调用来请求内核完成这些操作。我用自己的话说就是设置对应寄存器的值,达到调用系统函
- 深入了解盘古大模型:技术、应用与未来
Hardess-god
Literaturereview人工智能
随着人工智能技术的迅猛发展,预训练大模型已成为AI领域最前沿、最热门的研究方向之一。近年来,中国自主研发的大模型之一——盘古模型(PanGuModel)逐渐进入公众视野,凭借其强大的性能和广泛的应用前景,引发了行业内外的广泛关注。什么是盘古大模型?盘古大模型是华为公司联合多家科研机构共同研发的超大规模预训练语言模型。该模型以中文数据为主进行训练,旨在推动中文自然语言处理(NLP)以及跨模态应用的技
- 【人工智能之大模型】阐述生成式语言模型的工作机理...(二)
985小水博一枚呀
大大大模型知识点人工智能语言模型自然语言处理机器学习神经网络
【人工智能之大模型】阐述生成式语言模型的工作机理…(二)【人工智能之大模型】阐述生成式语言模型的工作机理…(二)文章目录【人工智能之大模型】阐述生成式语言模型的工作机理...(二)前言4.代码逐行解释TransformerBlock类初始化前向传播GenerativeLM类初始化前向传播推理示例测试生成5.总结欢迎宝子们点赞、关注、收藏!欢迎宝子们批评指正!祝所有的硕博生都能遇到好的导师!好的审稿
- 人工智能 - 通用 AI Agent 之 LangManus、Manus、OpenManus 和 OWL 技术选型
天机️灵韵
具身智能人工智能人工智能具身智能智能体
一、核心项目概览1.Manus(闭源通用AIAgent)定位:全球首个全流程自动化通用AIAgent,GAIA基准测试SOTA水平。核心能力:全流程自动化:从任务规划(如撰写报告)到执行(代码生成、表格制作)的端到端处理。智能纠错机制:基于沙箱环境的实时错误反思与调整(类似CodeAct技术)。云端依赖:需联网运行,集成浏览器操作、信息检索等工具。局限性:闭源且采用邀请制,二手市场邀请码溢价至数万
- 知识图谱中NLP新技术
魔王阿卡纳兹
知识图谱入门大数据治理与分析知识图谱自然语言处理人工智能
知识图谱与自然语言处理(NLP)的结合是当前人工智能领域的前沿方向,其技术发展呈现多维度融合与场景深化的特点。以下从核心技术突破、应用场景创新及未来趋势三个层面,系统梳理知识图谱中NLP的最新进展:一、核心技术突破基于预训练模型的图谱构建与增强预训练语言模型与知识嵌入融合:以BERT、KEPLER为代表的模型通过联合优化知识嵌入(KE)和语言建模目标,将知识图谱中的结构化知识融入预训练过程,显著提
- 掌握ChatGPT写代码的秘诀:开发者的完整指南
酷酷的崽798
机器学习chatgpt
文章目录前言:如何利用ChatGPT来写代码:一个深度指南1.ChatGPT的基本功能概述2.利用ChatGPT辅助代码编写的好处3.ChatGPT支持的编程语言4.如何向ChatGPT提问以获取最佳结果5.实际应用案例6.ChatGPT的局限性及其解决方法7.关于隐私和安全性的注意事项8.未来展望结论前言:如何利用ChatGPT来写代码:一个深度指南近年来,人工智能技术取得了飞跃性的进展,尤其是
- 堆数据结构:从基础原理到高效算法实现的技术探讨
Everyrt
课程设计
摘要堆作为一种特殊的树形数据结构,在多种算法场景中发挥着核心作用。本文深入剖析堆的基础原理,详细阐述堆的构建、插入、删除等操作的实现细节,并探讨其在优先队列、堆排序等高效算法中的应用,助力读者全面掌握堆数据结构及其应用技术。一、引言堆数据结构以其独特的特性,能够高效地获取集合中的最大(或最小)元素。无论是操作系统中的进程调度,还是搜索算法中的最优解筛选,堆都扮演着不可或缺的角色。理解堆的原理与实现
- LINUX PCIe架构详解
吕喜曦
LINUXPCIe架构详解【下载地址】LINUXPCIe架构详解分享LINUXPCIe架构详解欢迎阅读《LINUXPCIe架构详解》文档项目地址:https://gitcode.com/Open-source-documentation-tutorial/cb0cf欢迎阅读《LINUXPCIe架构详解》文档。本指南深入浅出地介绍了在Linux操作系统环境下,针对PCIExpress(PCIe)设备
- Python中Pyttsx3库实现文本转化成语音MP3格式文件
定星照空
python
Pyttsx3库介绍pyttsx3库是一个功能强大且使用方便的Python本地文本转语音库。它不仅能在离线下将文本转换为语音MP3格式文件,也能在Windows、MacOS和Linux等多个操作系统上实现语音播报。同时,还可以调整语音播报的语速、音量和音色。安装与基本使用安装:cmd命令行中执行pipinstallpyttsx3。基本使用示例:importpyttsx3#初始化语音引擎engine
- C++基础系列【26】排序和查找算法
程序喵大人
C++基础系列c语言算法开发语言c++
博主介绍:程序喵大人35-资深C/C++/Rust/Android/iOS客户端开发10年大厂工作经验嵌入式/人工智能/自动驾驶/音视频/游戏开发入门级选手《C++20高级编程》《C++23高级编程》等多本书籍著译者更多原创精品文章,首发gzh,见文末记得订阅专栏,以防走丢C++基础系列专栏C语言基础系列专栏C++大佬养成攻略专栏C++训练营排序与查找算法的重要性不用过多介绍了吧,面试也经常考察。
- 一篇文章带你了解-selenium工作原理详解
程序员笑笑
软件测试selenium测试工具软件测试自动化测试功能测试程序人生职场和发展
前言Selenium是一个用于Web应用程序自动化测试工具。Selenium测试直接运行在浏览器中,就像真正的用户在操作一样。支持的浏览器包括IE(7,8,9,10,11),MozillaFirefox,Safari,GoogleChrome,Opera等。主要功能包括:测试与浏览器的兼容性——测试你的应用程序看是否能够很好得工作在不同浏览器和操作系统之上。测试系统功能——创建回归测试检验软件功能
- Selenium工作原理详解
天才测试猿
selenium测试工具自动化测试软件测试测试用例python职场和发展
Selenium是一个用于Web应用程序自动化测试工具。Selenium测试直接运行在浏览器中,就像真正的用户在操作一样。支持的浏览器包括IE(7,8,9,10,11),MozillaFirefox,Safari,GoogleChrome,Opera等。主要功能包括:测试与浏览器的兼容性——测试你的应用程序看是否能够很好得工作在不同浏览器和操作系统之上。测试系统功能——创建回归测试检验软件功能和用
- 深入探讨盘古大模型的高精度多尺度能力
Hardess-god
WRF人工智能算法
随着人工智能技术的快速发展,大模型的研究逐渐进入新的阶段。其中,盘古大模型以其卓越的高精度和多尺度处理能力成为研究热点。本文将详细分析盘古模型在高精度多尺度问题上的技术特征、优势和应用潜力,并探讨其深入研究的方向。一、盘古模型概述盘古模型是华为推出的中文预训练大模型系列,拥有数十亿甚至千亿级的参数规模。它以Transformer架构为基础,通过海量文本数据进行训练,表现出优异的自然语言理解和生成能
- AI巨浪中的安全之舵:天空卫士助力人工智能落地远航
天空卫士
人工智能安全数据安全网络安全大数据
"AI时代的安全战场,不在云端在本地;数据治理的胜负手,不在防御在认知。"近期,众多企业纷纷接入DeepSeek大模型,迅速推动了大型模型应用的广泛铺开。无论是在制造业、金融业,还是在医疗、教育等领域,DeepSeek大模型的应用都如火如荼,遍地开花,展现出了其广泛的应用前景和巨大的商业价值。顺势而来的是DeepSeek一体机以"低成本、高算力、私有化部署"的优势席卷企业市场。因为DeepSeek
- DeepSeek重塑软件行业:研发工程师的机遇与挑战
LiuSid7
人工智能llama语言模型ai
人工智能技术的浪潮正以前所未有的速度重塑软件行业,而DeepSeek作为其中的代表性技术,已成为研发工程师日常工作中不可忽视的变革力量。从代码生成到架构优化,从效率提升到职业生态重构,DeepSeek正在重新定义工程师的工作范式。以下从技术革新、职业发展、行业趋势三个维度,分析其对研发工程师的核心影响。一、技术革新:从“重复劳动”到“创造力释放”代码生产的效率革命DeepSeek通过自然语言指令生
- 机器学习结合伏羲模型高精度多尺度气象分析与降尺度实现
Hardess-god
WRF算法人工智能
随着人工智能的发展,机器学习技术在气象预报领域展现出巨大潜力。本文详细探讨如何结合机器学习(ML)和伏羲模型进行高精度多尺度气象模拟分析,并提供详细的实现步骤和相关代码。1.研究目标与技术路线目标:结合机器学习模型与伏羲气象模式,实现区域和局地高精度降尺度。技术路线:伏羲模型提供大尺度气象数据和预报使用机器学习模型(如CNN、LSTM、XGBoost)进行降尺度2.数据准备与处理2.1气象数据获取
- OpenHarmony 开源硬件学习全指南:从入门到实战
琢磨先生David
开源harmonyos
OpenHarmony开源硬件学习全指南:从入门到实战随着万物互联时代的到来,OpenHarmony作为面向全场景的开源分布式操作系统,正逐步成为智能硬件开发的重要技术底座。本文将系统性地解析OpenHarmony开源硬件的学习路径、开发工具链及行业实践方案,为开发者提供从环境搭建到项目落地的完整指引。一、构建开发环境:混合平台的智慧选择OpenHarmony采用Windows与Linux混合开发
- 使用Python和LangChain构建检索增强生成(RAG)应用的详细指南
m0_57781768
pythonlangchain搜索引擎
使用Python和LangChain构建检索增强生成(RAG)应用的详细指南引言在人工智能和自然语言处理领域,利用大语言模型(LLM)构建复杂的问答(Q&A)系统是一个重要应用。检索增强生成(RetrievalAugmentedGeneration,RAG)是一种技术,通过将模型知识与额外数据结合来增强LLM的能力,使其能够回答关于特定源信息的问题。这些应用不仅限于公开数据,还可以处理私有数据和模
- 不用再当“技术宅“!这个AI神器让我5分钟变身人工智能达人
阳光永恒736
AI工具人工智能deepseek一键包本地部署AI资源
最近我在朋友圈刷到好多朋友都在玩AI画图、AI写诗,看得我心痒痒。可每次想自己试试,打开教程就被满屏的代码吓退——"Python环境配置"、"CUDA驱动安装"这些词比数学作业还让人头疼。直到我发现了一个叫DeepSeek本地部署一键包的神器,我的AI探索之旅终于变得像搭乐高一样简单!夸克网盘分享一、原来AI离我们这么近上周三放学路上,我看见隔壁班的小美用AI给自己照片生成古风造型,这让我突然意识
- 输了,腾讯golang一面凉了
golang学习记
golanggolang
本月正值4月,是金三银四的找工作的最佳时机。同时竞争也是很大,因为每年这个时候快要毕业的大学生也进去了找工作的潮水中。今天分享我的一位大佬朋友CC,勇闯腾讯golang的面试经历。这次面试问题的方向主要集中在计算机基础个网络方面。下面是主要问到的问题。第一个,http握手,https证书第二个,操作系统的中断,堆和栈第三个,数据库,乐观锁,悲观锁,acid等TSL四次握手的过程是什么第一次握手首先
- DeepSeek API在AutoCAD中的创新应用与挑战
CodeJourney.
数据库算法人工智能
在数字化设计领域,随着人工智能技术的飞速发展,将AI能力融入传统设计软件成为提升设计效率和质量的重要趋势。AutoCAD作为广泛应用的计算机辅助设计软件,与DeepSeekAPI的结合展现出了巨大的潜力。这种融合不仅为设计工作带来了全新的思路和方法,还在多个方面对设计流程进行了优化和创新。一、DeepSeekAPI赋能AutoCAD的多元应用场景(一)智能设计辅助:让创意快速落地在传统设计过程中,
- AI 赋能应急管理:ChatGPT、DeepSeek、Grok 的应用探索
一ge科研小菜菜
人工智能人工智能
个人主页:一ge科研小菜鸡-CSDN博客期待您的关注1.引言随着人工智能(AI)技术的快速发展,大语言模型(LLM)在应急管理领域的应用逐步扩大。ChatGPT、DeepSeek、Grok等AI模型凭借强大的文本处理、数据分析和推理能力,可为灾害预警、应急响应、风险评估等提供高效支持。本文将对比三大AI模型在应急管理中的优势,并探讨其在未来智能化应急管理体系中的应用前景。2.应急管理中的核心挑战应
- DeepSeek的崛起:2025新春国产AI模型的全球影响力
耶耶Norsea
网络杂烩人工智能百度
摘要在2025年新春之际,国产AI模型DeepSeek以现象级的姿态迅速崛起,凭借免费、易用及高性能的特点,吸引了全球科技界的广泛关注。这款大型人工智能模型不仅展现了国产技术的实力,还为用户提供了高效便捷的使用体验,成为行业内的焦点。关键词DeepSeek崛起,2025新春,国产AI模型,免费易用,高性能特点一、国产AI的崭新篇章1.1DeepSeek的诞生背景在2025年新春之际,DeepSee
- 一文说清楚什么是预训练(Pre-Training)、微调(Fine-Tuning),零基础小白建议收藏!!
小城哇哇
人工智能语言模型AI大模型大模型微调预训练agiLLM
前言预训练和微调是现代AI模型的核心技术,通过两者的结合,机器能够在处理复杂任务时表现得更为高效和精准。预训练为模型提供了广泛的语言能力,而微调则确保了模型能够根据特定任务进行细化和优化。近年来,人工智能(AI)在各个领域的突破性进展,尤其是在自然语言处理(NLP)方面,引起了广泛关注。两项重要的技术方法——预训练和微调,成为了AI模型发展的基石。预训练通常是指在大规模数据集上进行模型训练,以帮助
- ONE Deep模型:LG AI Research的开源突破
耶耶Norsea
网络杂烩自动化
摘要由LGAIResearch开发的ONEDeep系列开源AI模型,参数规模覆盖2.4亿至32亿。经评估,2.4B参数规模的ONEDeep模型在性能上优于同类其他模型,展现出显著优势。这一成果为AI技术的应用与研究提供了强有力的支持。关键词ONEDeep模型,开源AI模型,LGAIResearch,2.4B参数,性能优越一、ONEDeep模型概述1.1ONEDeep模型的开发背景在当今人工智能技术
- PXE系统
惟贤箬溪
运维运维服务器
PXE(PrebootExecutionEnvironment)系统PXE(PrebootExecutionEnvironment)是一种基于网络启动的技术,可以通过网络从远程服务器加载操作系统并进行安装或运行。通常,PXE用于企业环境,尤其是大规模部署操作系统时,能够实现无盘工作站的启动以及批量系统安装。通过PXE,用户无需使用U盘、光盘等物理媒介,只需要一台支持网络启动的计算机和一个配置好的P
- 戴尔笔记本win8系统改装win7系统
sophia天雪
win7戴尔改装系统win8
戴尔win8 系统改装win7 系统详述
第一步:使用U盘制作虚拟光驱:
1)下载安装UltraISO:注册码可以在网上搜索。
2)启动UltraISO,点击“文件”—》“打开”按钮,打开已经准备好的ISO镜像文
- BeanUtils.copyProperties使用笔记
bylijinnan
java
BeanUtils.copyProperties VS PropertyUtils.copyProperties
两者最大的区别是:
BeanUtils.copyProperties会进行类型转换,而PropertyUtils.copyProperties不会。
既然进行了类型转换,那BeanUtils.copyProperties的速度比不上PropertyUtils.copyProp
- MyEclipse中文乱码问题
0624chenhong
MyEclipse
一、设置新建常见文件的默认编码格式,也就是文件保存的格式。
在不对MyEclipse进行设置的时候,默认保存文件的编码,一般跟简体中文操作系统(如windows2000,windowsXP)的编码一致,即GBK。
在简体中文系统下,ANSI 编码代表 GBK编码;在日文操作系统下,ANSI 编码代表 JIS 编码。
Window-->Preferences-->General -
- 发送邮件
不懂事的小屁孩
send email
import org.apache.commons.mail.EmailAttachment;
import org.apache.commons.mail.EmailException;
import org.apache.commons.mail.HtmlEmail;
import org.apache.commons.mail.MultiPartEmail;
- 动画合集
换个号韩国红果果
htmlcss
动画 指一种样式变为另一种样式 keyframes应当始终定义0 100 过程
1 transition 制作鼠标滑过图片时的放大效果
css
.wrap{
width: 340px;height: 340px;
position: absolute;
top: 30%;
left: 20%;
overflow: hidden;
bor
- 网络最常见的攻击方式竟然是SQL注入
蓝儿唯美
sql注入
NTT研究表明,尽管SQL注入(SQLi)型攻击记录详尽且为人熟知,但目前网络应用程序仍然是SQLi攻击的重灾区。
信息安全和风险管理公司NTTCom Security发布的《2015全球智能威胁风险报告》表明,目前黑客攻击网络应用程序方式中最流行的,要数SQLi攻击。报告对去年发生的60亿攻击 行为进行分析,指出SQLi攻击是最常见的网络应用程序攻击方式。全球网络应用程序攻击中,SQLi攻击占
- java笔记2
a-john
java
类的封装:
1,java中,对象就是一个封装体。封装是把对象的属性和服务结合成一个独立的的单位。并尽可能隐藏对象的内部细节(尤其是私有数据)
2,目的:使对象以外的部分不能随意存取对象的内部数据(如属性),从而使软件错误能够局部化,减少差错和排错的难度。
3,简单来说,“隐藏属性、方法或实现细节的过程”称为——封装。
4,封装的特性:
4.1设置
- [Andengine]Error:can't creat bitmap form path “gfx/xxx.xxx”
aijuans
学习Android遇到的错误
最开始遇到这个错误是很早以前了,以前也没注意,只当是一个不理解的bug,因为所有的texture,textureregion都没有问题,但是就是提示错误。
昨天和美工要图片,本来是要背景透明的png格式,可是她却给了我一个jpg的。说明了之后她说没法改,因为没有png这个保存选项。
我就看了一下,和她要了psd的文件,还好我有一点
- 自己写的一个繁体到简体的转换程序
asialee
java转换繁体filter简体
今天调研一个任务,基于java的filter实现繁体到简体的转换,于是写了一个demo,给各位博友奉上,欢迎批评指正。
实现的思路是重载request的调取参数的几个方法,然后做下转换。
- android意图和意图监听器技术
百合不是茶
android显示意图隐式意图意图监听器
Intent是在activity之间传递数据;Intent的传递分为显示传递和隐式传递
显式意图:调用Intent.setComponent() 或 Intent.setClassName() 或 Intent.setClass()方法明确指定了组件名的Intent为显式意图,显式意图明确指定了Intent应该传递给哪个组件。
隐式意图;不指明调用的名称,根据设
- spring3中新增的@value注解
bijian1013
javaspring@Value
在spring 3.0中,可以通过使用@value,对一些如xxx.properties文件中的文件,进行键值对的注入,例子如下:
1.首先在applicationContext.xml中加入:
<beans xmlns="http://www.springframework.
- Jboss启用CXF日志
sunjing
logjbossCXF
1. 在standalone.xml配置文件中添加system-properties:
<system-properties> <property name="org.apache.cxf.logging.enabled" value=&
- 【Hadoop三】Centos7_x86_64部署Hadoop集群之编译Hadoop源代码
bit1129
centos
编译必需的软件
Firebugs3.0.0
Maven3.2.3
Ant
JDK1.7.0_67
protobuf-2.5.0
Hadoop 2.5.2源码包
Firebugs3.0.0
http://sourceforge.jp/projects/sfnet_findbug
- struts2验证框架的使用和扩展
白糖_
框架xmlbeanstruts正则表达式
struts2能够对前台提交的表单数据进行输入有效性校验,通常有两种方式:
1、在Action类中通过validatexx方法验证,这种方式很简单,在此不再赘述;
2、通过编写xx-validation.xml文件执行表单验证,当用户提交表单请求后,struts会优先执行xml文件,如果校验不通过是不会让请求访问指定action的。
本文介绍一下struts2通过xml文件进行校验的方法并说
- 记录-感悟
braveCS
感悟
再翻翻以前写的感悟,有时会发现自己很幼稚,也会让自己找回初心。
2015-1-11 1. 能在工作之余学习感兴趣的东西已经很幸福了;
2. 要改变自己,不能这样一直在原来区域,要突破安全区舒适区,才能提高自己,往好的方面发展;
3. 多反省多思考;要会用工具,而不是变成工具的奴隶;
4. 一天内集中一个定长时间段看最新资讯和偏流式博
- 编程之美-数组中最长递增子序列
bylijinnan
编程之美
import java.util.Arrays;
import java.util.Random;
public class LongestAccendingSubSequence {
/**
* 编程之美 数组中最长递增子序列
* 书上的解法容易理解
* 另一方法书上没有提到的是,可以将数组排序(由小到大)得到新的数组,
* 然后求排序后的数组与原数
- 读书笔记5
chengxuyuancsdn
重复提交struts2的token验证
1、重复提交
2、struts2的token验证
3、用response返回xml时的注意
1、重复提交
(1)应用场景
(1-1)点击提交按钮两次。
(1-2)使用浏览器后退按钮重复之前的操作,导致重复提交表单。
(1-3)刷新页面
(1-4)使用浏览器历史记录重复提交表单。
(1-5)浏览器重复的 HTTP 请求。
(2)解决方法
(2-1)禁掉提交按钮
(2-2)
- [时空与探索]全球联合进行第二次费城实验的可能性
comsci
二次世界大战前后,由爱因斯坦参加的一次在海军舰艇上进行的物理学实验 -费城实验
至今给我们大家留下很多迷团.....
关于费城实验的详细过程,大家可以在网络上搜索一下,我这里就不详细描述了
在这里,我的意思是,现在
- easy connect 之 ORA-12154: TNS: 无法解析指定的连接标识符
daizj
oracleORA-12154
用easy connect连接出现“tns无法解析指定的连接标示符”的错误,如下:
C:\Users\Administrator>sqlplus username/
[email protected]:1521/orcl
SQL*Plus: Release 10.2.0.1.0 – Production on 星期一 5月 21 18:16:20 2012
Copyright (c) 198
- 简单排序:归并排序
dieslrae
归并排序
public void mergeSort(int[] array){
int temp = array.length/2;
if(temp == 0){
return;
}
int[] a = new int[temp];
int
- C语言中字符串的\0和空格
dcj3sjt126com
c
\0 为字符串结束符,比如说:
abcd (空格)cdefg;
存入数组时,空格作为一个字符占有一个字节的空间,我们
- 解决Composer国内速度慢的办法
dcj3sjt126com
Composer
用法:
有两种方式启用本镜像服务:
1 将以下配置信息添加到 Composer 的配置文件 config.json 中(系统全局配置)。见“例1”
2 将以下配置信息添加到你的项目的 composer.json 文件中(针对单个项目配置)。见“例2”
为了避免安装包的时候都要执行两次查询,切记要添加禁用 packagist 的设置,如下 1 2 3 4 5
- 高效可伸缩的结果缓存
shuizhaosi888
高效可伸缩的结果缓存
/**
* 要执行的算法,返回结果v
*/
public interface Computable<A, V> {
public V comput(final A arg);
}
/**
* 用于缓存数据
*/
public class Memoizer<A, V> implements Computable<A,
- 三点定位的算法
haoningabc
c算法
三点定位,
已知a,b,c三个顶点的x,y坐标
和三个点都z坐标的距离,la,lb,lc
求z点的坐标
原理就是围绕a,b,c 三个点画圆,三个圆焦点的部分就是所求
但是,由于三个点的距离可能不准,不一定会有结果,
所以是三个圆环的焦点,环的宽度开始为0,没有取到则加1
运行
gcc -lm test.c
test.c代码如下
#include "stdi
- epoll使用详解
jimmee
clinux服务端编程epoll
epoll - I/O event notification facility在linux的网络编程中,很长的时间都在使用select来做事件触发。在linux新的内核中,有了一种替换它的机制,就是epoll。相比于select,epoll最大的好处在于它不会随着监听fd数目的增长而降低效率。因为在内核中的select实现中,它是采用轮询来处理的,轮询的fd数目越多,自然耗时越多。并且,在linu
- Hibernate对Enum的映射的基本使用方法
linzx0212
enumHibernate
枚举
/**
* 性别枚举
*/
public enum Gender {
MALE(0), FEMALE(1), OTHER(2);
private Gender(int i) {
this.i = i;
}
private int i;
public int getI
- 第10章 高级事件(下)
onestopweb
事件
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- 孙子兵法
roadrunners
孙子兵法
始计第一
孙子曰:
兵者,国之大事,死生之地,存亡之道,不可不察也。
故经之以五事,校之以计,而索其情:一曰道,二曰天,三曰地,四曰将,五
曰法。道者,令民于上同意,可与之死,可与之生,而不危也;天者,阴阳、寒暑
、时制也;地者,远近、险易、广狭、死生也;将者,智、信、仁、勇、严也;法
者,曲制、官道、主用也。凡此五者,将莫不闻,知之者胜,不知之者不胜。故校
之以计,而索其情,曰
- MySQL双向复制
tomcat_oracle
mysql
本文包括:
主机配置
从机配置
建立主-从复制
建立双向复制
背景
按照以下简单的步骤:
参考一下:
在机器A配置主机(192.168.1.30)
在机器B配置从机(192.168.1.29)
我们可以使用下面的步骤来实现这一点
步骤1:机器A设置主机
在主机中打开配置文件 ,
- zoj 3822 Domination(dp)
阿尔萨斯
Mina
题目链接:zoj 3822 Domination
题目大意:给定一个N∗M的棋盘,每次任选一个位置放置一枚棋子,直到每行每列上都至少有一枚棋子,问放置棋子个数的期望。
解题思路:大白书上概率那一张有一道类似的题目,但是因为时间比较久了,还是稍微想了一下。dp[i][j][k]表示i行j列上均有至少一枚棋子,并且消耗k步的概率(k≤i∗j),因为放置在i+1~n上等价与放在i+1行上,同理