gawk 手册

本人添加了标题目录, 方便阅读查阅, 也有自己的劳动.

AWK(1) Utility Commands GAWK(1)

1.NAME

   gawk - pattern scanning and processing language

2.SYNOPSIS

   gawk [ POSIX or GNU style options ] -f program-file [ -- ] file ...
   gawk [ POSIX or GNU style options ] [ -- ] program-text file ...

   pgawk [ POSIX or GNU style options ] -f program-file [ -- ] file ...
   pgawk [ POSIX or GNU style options ] [ -- ] program-text file ...

   dgawk [ POSIX or GNU style options ] -f program-file [ -- ] file ...

3.DESCRIPTION

   Gawk  is the GNU Project's implementation of the AWK programming language.  It conforms to the definition of the language in the
   POSIX 1003.1 Standard.  This version in turn is based on the description in The AWK Programming Language, by Aho, Kernighan, and
   Weinberger.   Gawk provides the additional features found in the current version of UNIX awk and a number of GNU-specific exten‐
   sions.

   The command line consists of options to gawk itself, the AWK program text (if not supplied via the -f or  --file  options),  and
   values to be made available in the ARGC and ARGV pre-defined AWK variables.

   Pgawk  is  the  profiling  version  of gawk.  It is identical in every way to gawk, except that programs run more slowly, and it
   automatically produces an execution profile in the file awkprof.out when done.  See the --profile option, below.

   Dgawk is an awk debugger. Instead of running the program directly, it loads the AWK source code and then prompts  for  debugging
   commands.   Unlike  gawk  and pgawk, dgawk only processes AWK program source provided with the -f option.  The debugger is docu‐
   mented in GAWK: Effective AWK Programming.

4.OPTION FORMAT

   Gawk options may be either traditional POSIX-style one letter options, or GNU-style long options.  POSIX options  start  with  a
   single “-”, while long options start with “--”.  Long options are provided for both GNU-specific features and for POSIX-mandated
   features.

   Gawk- specific options are typically used in long-option form.  Arguments to long options are either joined with the  option  by
   an  = sign, with no intervening spaces, or they may be provided in the next command line argument.  Long options may be abbrevi‐
   ated, as long as the abbreviation remains unique.

   Additionally, each long option has a corresponding short option, so that the option's functionality may be used from  within  #!
   executable scripts.

5.OPTIONS

   Gawk  accepts  the following options.  Standard options are listed first, followed by options for gawk extensions, listed alpha‐
   betically by short option.

   -f program-file
   --file program-file
          Read the AWK program source from the file program-file, instead of from the first command line argument.  Multiple -f (or
          --file) options may be used.

   -F fs
   --field-separator fs
          Use fs for the input field separator (the value of the FS predefined variable).

   -v var=val
   --assign var=val
          Assign  the value val to the variable var, before execution of the program begins.  Such variable values are available to
          the BEGIN block of an AWK program.

   -b
   --characters-as-bytes
          Treat all input data as single-byte characters. In other words, don't pay any attention to the  locale  information  when
          attempting to process strings as multibyte characters.  The --posix option overrides this one.

   -c
   --traditional
          Run  in compatibility mode.  In compatibility mode, gawk behaves identically to UNIX awk; none of the GNU-specific exten‐
          sions are recognized.  See GNU EXTENSIONS, below, for more information.

   -C
   --copyright
          Print the short version of the GNU copyright information message on the standard output and exit successfully.

   -d[file]
   --dump-variables[=file]
          Print a sorted list of global variables, their types and final values to file.  If no file is provided, gawk uses a  file
          named awkvars.out in the current directory.
          Having  a  list  of  all the global variables is a good way to look for typographical errors in your programs.  You would
          also use this option if you have a large program with a lot of functions, and you want to be  sure  that  your  functions
          don't  inadvertently  use global variables that you meant to be local.  (This is a particularly easy mistake to make with
          simple variable names like i, j, and so on.)

   -e program-text
   --source program-text
          Use program-text as AWK program source code.  This option allows the easy intermixing of library functions (used via  the
          -f  and  --file  options) with source code entered on the command line.  It is intended primarily for medium to large AWK
          programs used in shell scripts.

   -E file
   --exec file
          Similar to -f, however, this is option is the last one processed.  This should be used with #!  scripts, particularly for
          CGI  applications,  to  avoid passing in options or source code (!) on the command line from a URL.  This option disables
          command-line variable assignments.

   -g
   --gen-pot
          Scan and parse the AWK program, and generate a GNU .pot (Portable Object Template) format file on  standard  output  with
          entries  for  all localizable strings in the program.  The program itself is not executed.  See the GNU gettext distribu‐
          tion for more information on .pot files.

   -h
   --help Print a relatively short summary of the available options on the standard output.  (Per the GNU Coding  Standards,  these
          options cause an immediate, successful exit.)

   -L [value]
   --lint[=value]
          Provide  warnings about constructs that are dubious or non-portable to other AWK implementations.  With an optional argu‐
          ment of fatal, lint warnings become fatal errors.  This may be drastic, but its use will certainly encourage the develop‐
          ment of cleaner AWK programs.  With an optional argument of invalid, only warnings about things that are actually invalid
          are issued. (This is not fully implemented yet.)

   -n
   --non-decimal-data
          Recognize octal and hexadecimal values in input data.  Use this option with great caution!

   -N
   --use-lc-numeric
          This forces gawk to use the locale's decimal point character when  parsing  input  data.   Although  the  POSIX  standard
          requires this behavior, and gawk does so when --posix is in effect, the default is to follow traditional behavior and use
          a period as the decimal point, even in locales where the period is not the decimal point character.   This  option  over‐
          rides the default behavior, without the full draconian strictness of the --posix option.

   -O
   --optimize
          Enable  optimizations  upon  the  internal representation of the program.  Currently, this includes just simple constant-
          folding. The gawk maintainer hopes to add additional optimizations over time.

   -p[prof_file]
   --profile[=prof_file]
          Send profiling data to prof_file.  The default is awkprof.out.  When run  with  gawk,  the  profile  is  just  a  “pretty
          printed”  version  of  the  program.  When run with pgawk, the profile contains execution counts of each statement in the
          program in the left margin and function call counts for each user-defined function.

   -P
   --posix
          This turns on compatibility mode, with the following additional restrictions:

          · \x escape sequences are not recognized.

          · Only space and tab act as field separators when FS is set to a single space, newline does not.

          · You cannot continue lines after ?  and :.

          · The synonym func for the keyword function is not recognized.

          · The operators ** and **= cannot be used in place of ^ and ^=.

          · The fflush() function is not available.

   -r
   --re-interval
          Enable the use of interval expressions in regular expression matching (see Regular Expressions, below).  Interval expres‐
          sions were not traditionally available in the AWK language.  The POSIX standard added them, to make awk and egrep consis‐
          tent with each other.  They are enabled by default, but this option remains for use with --traditional.

   -R
   --command file
          Dgawk only.  Read stored debugger commands from file.

   -S
   --sandbox
          Runs gawk in sandbox mode, disabling the system() function, input redirection with getline, output redirection with print
          and  printf,  and  loading dynamic extensions.  Command execution (through pipelines) is also disabled.  This effectively
          blocks a script from accessing local resources (except for the files specified on the command line).

   -t
   --lint-old
          Provide warnings about constructs that are not portable to the original version of Unix awk.

   -V
   --version
          Print version information for this particular copy of gawk on the standard output.  This is useful mainly for knowing  if
          the current copy of gawk on your system is up to date with respect to whatever the Free Software Foundation is distribut‐
          ing.  This is also useful when reporting bugs.  (Per the GNU Coding Standards, these options cause an immediate, success‐
          ful exit.)

   --     Signal the end of options. This is useful to allow further arguments to the AWK program itself to start with a “-”.  This
          provides consistency with the argument parsing convention used by most other POSIX programs.

   In compatibility mode, any other options are flagged as invalid, but are otherwise ignored.  In normal  operation,  as  long  as
   program text has been supplied, unknown options are passed on to the AWK program in the ARGV array for processing.  This is par‐
   ticularly useful for running AWK programs via the “#!” executable interpreter mechanism.

6.AWK PROGRAM EXECUTION

   An AWK program consists of a sequence of pattern-action statements and optional function definitions.

          @include "filename" pattern   { action statements }
          function name(parameter list) { statements }

   Gawk first reads the program source from the program-file(s) if specified, from arguments to --source, or from  the  first  non-
   option  argument  on  the command line.  The -f and --source options may be used multiple times on the command line.  Gawk reads
   the program text as if all the program-files and command line source texts had been concatenated together.  This is  useful  for
   building  libraries  of  AWK functions, without having to include them in each new AWK program that uses them.  It also provides
   the ability to mix library functions with command line programs.

   In addition, lines beginning with @include may be used to include other source files into your program, making library use  even
   easier.

   The  environment  variable  AWKPATH  specifies a search path to use when finding source files named with the -f option.  If this
   variable does not exist, the default path is ".:/usr/local/share/awk".  (The actual directory may vary, depending upon how  gawk
   was built and installed.)  If a file name given to the -f option contains a “/” character, no path search is performed.

   Gawk  executes  AWK programs in the following order.  First, all variable assignments specified via the -v option are performed.
   Next, gawk compiles the program into an internal form.  Then, gawk executes the code in the BEGIN block(s) (if  any),  and  then
   proceeds  to  read  each file named in the ARGV array (up to ARGV[ARGC]).  If there are no files named on the command line, gawk
   reads the standard input.

   If a filename on the command line has the form var=val it is treated as  a  variable  assignment.   The  variable  var  will  be
   assigned the value val.  (This happens after any BEGIN block(s) have been run.)  Command line variable assignment is most useful
   for dynamically assigning values to the variables AWK uses to control how input is broken into fields and records.  It  is  also
   useful for controlling state if multiple passes are needed over a single data file.

   If the value of a particular element of ARGV is empty (""), gawk skips over it.

   For  each  input file, if a BEGINFILE rule exists, gawk executes the associated code before processing the contents of the file.
   Similarly, gawk executes the code associated with ENDFILE after processing the file.

   For each record in the input, gawk tests to see if it matches any pattern in the AWK program.  For each pattern that the  record
   matches, the associated action is executed.  The patterns are tested in the order they occur in the program.

   Finally, after all the input is exhausted, gawk executes the code in the END block(s) (if any).

Command Line Directories
According to POSIX, files named on the awk command line must be text files. The behavior is “undefined” if they are not.
Most versions of awk treat a directory on the command line as a fatal error.

   Starting with version 4.0 of gawk, a directory on the command line produces a warning, but is otherwise skipped.  If  either  of
   the --posix or --traditional options is given, then gawk reverts to treating directories on the command line as a fatal error.

7.VARIABLES, RECORDS AND FIELDS

1.VARIABLES

   AWK variables are dynamic; they come into existence when they are first used.  Their values are either floating-point numbers or
   strings, or both, depending upon how they are used.  AWK also has one dimensional arrays; arrays with multiple dimensions may be
   simulated.  Several pre-defined variables are set as a program runs; these are described as needed and summarized below.

2.Records

   Normally,  records  are  separated  by newline characters.  You can control how records are separated by assigning values to the
   built-in variable RS.  If RS is any single character, that character separates records.  Otherwise, RS is a regular  expression.
   Text  in  the  input  that matches this regular expression separates the record.  However, in compatibility mode, only the first
   character of its string value is used for separating records.  If RS is set to the null string, then records  are  separated  by
   blank lines.  When RS is set to the null string, the newline character always acts as a field separator, in addition to whatever
   value FS may have.

3.Fields

   As each input record is read, gawk splits the record into fields, using the value of the FS variable as the field separator.  If
   FS  is  a  single  character,  fields are separated by that character.  If FS is the null string, then each individual character
   becomes a separate field.  Otherwise, FS is expected to be a full regular expression.  In the special case that FS is  a  single
   space,  fields  are  separated by runs of spaces and/or tabs and/or newlines.  (But see the section POSIX COMPATIBILITY, below).
   NOTE: The value of IGNORECASE (see below) also affects how fields are split when FS is a regular expression, and how records are
   separated when RS is a regular expression.

   If  the  FIELDWIDTHS  variable is set to a space separated list of numbers, each field is expected to have fixed width, and gawk
   splits up the record using the specified widths.  The value of FS is ignored.  Assigning a new value to FS or FPAT overrides the
   use of FIELDWIDTHS.

   Similarly, if the FPAT variable is set to a string representing a regular expression, each field is made up of text that matches
   that regular expression. In this case, the regular expression describes the fields themselves, instead of the  text  that  sepa‐
   rates the fields.  Assigning a new value to FS or FIELDWIDTHS overrides the use of FPAT.

   Each  field  in the input record may be referenced by its position, $1, $2, and so on.  $0 is the whole record.  Fields need not
   be referenced by constants:

          n = 5
          print $n

   prints the fifth field in the input record.

   The variable NF is set to the total number of fields in the input record.

   References to non-existent fields (i.e. fields after $NF) produce the null-string.  However, assigning to a  non-existent  field
   (e.g.,  $(NF+2)  =  5) increases the value of NF, creates any intervening fields with the null string as their value, and causes
   the value of $0 to be recomputed, with the fields being separated by the value of OFS.  References to negative  numbered  fields
   cause  a  fatal  error.   Decrementing  NF  causes the values of fields past the new value to be lost, and the value of $0 to be
   recomputed, with the fields being separated by the value of OFS.

   Assigning a value to an existing field causes the whole record to be rebuilt when $0  is  referenced.   Similarly,  assigning  a
   value to $0 causes the record to be resplit, creating new values for the fields.

4.Built-in Variables

   Gawk's built-in variables are:

   ARGC        The number of command line arguments (does not include options to gawk, or the program source).

   ARGIND      The index in ARGV of the current file being processed.

   ARGV        Array  of  command  line  arguments.  The array is indexed from 0 to ARGC - 1.  Dynamically changing the contents of
               ARGV can control the files used for data.

   BINMODE     On non-POSIX systems, specifies use of “binary” mode for all file I/O.  Numeric values of 1, 2, or 3,  specify  that
               input  files, output files, or all files, respectively, should use binary I/O.  String values of "r", or "w" specify
               that input files, or output files, respectively, should use binary I/O.  String values of "rw" or "wr" specify  that
               all files should use binary I/O.  Any other string value is treated as "rw", but generates a warning message.

   CONVFMT     The conversion format for numbers, "%.6g", by default.

   ENVIRON     An  array containing the values of the current environment.  The array is indexed by the environment variables, each
               element being the value of that variable (e.g., ENVIRON["HOME"] might be /home/arnold).  Changing  this  array  does
               not affect the environment seen by programs which gawk spawns via redirection or the system() function.

   ERRNO       If  a  system  error  occurs either doing a redirection for getline, during a read for getline, or during a close(),
               then ERRNO will contain a string describing the error.  The value is subject to translation in non-English locales.

   FIELDWIDTHS A whitespace separated list of field widths.  When set, gawk parses the input into fields of fixed width, instead of
               using the value of the FS variable as the field separator.  See Fields, above.

   FILENAME    The  name  of  the current input file.  If no files are specified on the command line, the value of FILENAME is “-”.
               However, FILENAME is undefined inside the BEGIN block (unless set by getline).

   FNR         The input record number in the current input file.

   FPAT        A regular expression describing the contents of the fields in a record.   When  set,  gawk  parses  the  input  into
               fields,  where  the  fields match the regular expression, instead of using the value of the FS variable as the field
               separator.  See Fields, above.

   FS          The input field separator, a space by default.  See Fields, above.

   IGNORECASE  Controls the case-sensitivity of all regular expression and string operations.  If IGNORECASE has a non-zero  value,
               then  string comparisons and pattern matching in rules, field splitting with FS and FPAT, record separating with RS,
               regular expression matching with ~ and !~, and the gensub(), gsub(),  index(),  match(),  patsplit(),  split(),  and
               sub()  built-in functions all ignore case when doing regular expression operations.  NOTE: Array subscripting is not
               affected.  However, the asort() and asorti() functions are affected.
               Thus, if IGNORECASE is not equal to zero, /aB/ matches all of the strings "ab", "aB", "Ab", and "AB".  As  with  all
               AWK variables, the initial value of IGNORECASE is zero, so all regular expression and string operations are normally
               case-sensitive.

   LINT        Provides dynamic control of the --lint option from within an AWK program.  When true,  gawk  prints  lint  warnings.
               When  false,  it  does not.  When assigned the string value "fatal", lint warnings become fatal errors, exactly like
               --lint=fatal.  Any other true value just prints warnings.

   NF          The number of fields in the current input record.

   NR          The total number of input records seen so far.

   OFMT        The output format for numbers, "%.6g", by default.

   OFS         The output field separator, a space by default.

   ORS         The output record separator, by default a newline.

   PROCINFO    The elements of this array provide access to information about the running AWK program.  On some systems, there  may
               be elements in the array, "group1" through "groupn" for some n, which is the number of supplementary groups that the
               process has.  Use the in operator to test for these elements.  The following elements are guaranteed  to  be  avail‐
               able:

               PROCINFO["egid"]    the value of the getegid(2) system call.

               PROCINFO["strftime"]
                                   The default time format string for strftime().

               PROCINFO["euid"]    the value of the geteuid(2) system call.

               PROCINFO["FS"]      "FS"  if field splitting with FS is in effect, "FPAT" if field splitting with FPAT is in effect,
                                   or "FIELDWIDTHS" if field splitting with FIELDWIDTHS is in effect.

               PROCINFO["gid"]     the value of the getgid(2) system call.

               PROCINFO["pgrpid"]  the process group ID of the current process.

               PROCINFO["pid"]     the process ID of the current process.

               PROCINFO["ppid"]    the parent process ID of the current process.

               PROCINFO["uid"]     the value of the getuid(2) system call.

               PROCINFO["sorted_in"]
                                   If this element exists in PROCINFO, then its value controls the order in  which  array  elements
                                   are   traversed   in   for   loops.    Supported   values  are  "@ind_str_asc",  "@ind_num_asc",
                                   "@val_type_asc",    "@val_str_asc",    "@val_num_asc",     "@ind_str_desc",     "@ind_num_desc",
                                   "@val_type_desc",  "@val_str_desc", "@val_num_desc", and "@unsorted".  The value can also be the
                                   name of any comparison function defined as follows:

                      function cmp_func(i1, v1, i2, v2)

               where i1 and i2 are the indices, and v1 and v2 are the corresponding values of the two elements being compared.   It
               should  return a number less than, equal to, or greater than 0, depending on how the elements of the array are to be
               ordered.

               PROCINFO["version"]
                      the version of gawk.

   RS          The input record separator, by default a newline.

   RT          The record terminator.  Gawk sets RT to the input text that matched the character or regular expression specified by
               RS.

   RSTART      The  index  of the first character matched by match(); 0 if no match.  (This implies that character indices start at
               one.)

   RLENGTH     The length of the string matched by match(); -1 if no match.

   SUBSEP      The character used to separate multiple subscripts in array elements, by default "\034".

   TEXTDOMAIN  The text domain of the AWK program; used to find the localized translations for the program's strings.

5.Arrays

   Arrays are subscripted with an expression between square brackets ([ and ]).  If the expression is  an  expression  list  (expr,
   expr  ...)  then the array subscript is a string consisting of the concatenation of the (string) value of each expression, sepa‐
   rated by the value of the SUBSEP variable.  This facility is used to simulate multiply dimensioned arrays.  For example:

          i = "A"; j = "B"; k = "C"
          x[i, j, k] = "hello, world\n"

   assigns the string "hello, world\n" to the element of the array x which is indexed by the string "A\034B\034C".  All  arrays  in
   AWK are associative, i.e. indexed by string values.

   The special operator in may be used to test if an array has an index consisting of a particular value:

          if (val in array)
               print array[val]

   If the array has multiple subscripts, use (i, j) in array.

   The in construct may also be used in a for loop to iterate over all the elements of an array.

   An  element may be deleted from an array using the delete statement.  The delete statement may also be used to delete the entire
   contents of an array, just by specifying the array name without a subscript.

   gawk supports true multidimensional arrays. It does not require that such arrays be ``rectangular'' as in C or C++.   For  exam‐
   ple:
          a[1] = 5
          a[2][1] = 6
          a[2][2] = 7

6.Variable Typing And Conversion

   Variables  and  fields may be (floating point) numbers, or strings, or both.  How the value of a variable is interpreted depends
   upon its context.  If used in a numeric expression, it will be treated as a number; if used as a string it will be treated as  a
   string.

   To  force a variable to be treated as a number, add 0 to it; to force it to be treated as a string, concatenate it with the null
   string.

   When a string must be converted to a number, the conversion is accomplished using strtod(3).  A number is converted to a  string
   by  using  the value of CONVFMT as a format string for sprintf(3), with the numeric value of the variable as the argument.  How‐
   ever, even though all numbers in AWK are floating-point, integral values are always converted as integers.  Thus, given

          CONVFMT = "%2.2f"
          a = 12
          b = a ""

   the variable b has a string value of "12" and not "12.00".

   NOTE: When operating in POSIX mode (such as with the --posix command line option), beware that  locale  settings  may  interfere
   with the way decimal numbers are treated: the decimal separator of the numbers you are feeding to gawk must conform to what your
   locale would expect, be it a comma (,) or a period (.).

   Gawk performs comparisons as follows: If two variables are numeric, they are compared numerically.  If one value is numeric  and
   the  other  has  a  string value that is a “numeric string,” then comparisons are also done numerically.  Otherwise, the numeric
   value is converted to a string and a string comparison is performed.  Two strings are compared, of course, as strings.

   Note that string constants, such as "57", are not numeric strings, they are string constants.  The idea of “numeric string” only
   applies  to  fields, getline input, FILENAME, ARGV elements, ENVIRON elements and the elements of an array created by split() or
   patsplit() that are numeric strings.  The basic idea is that user input, and only user input,  that  looks  numeric,  should  be
   treated that way.

   Uninitialized variables have the numeric value 0 and the string value "" (the null, or empty, string).

7.Octal and Hexadecimal Constants

   You  may use C-style octal and hexadecimal constants in your AWK program source code.  For example, the octal value 011 is equal
   to decimal 9, and the hexadecimal value 0x11 is equal to decimal 17.

8.String Constants

   String constants in AWK are sequences of characters enclosed between double quotes  (like  "value").   Within  strings,  certain
   escape sequences are recognized, as in C.  These are:

   \\   A literal backslash.

   \a   The “alert” character; usually the ASCII BEL character.

   \b   backspace.

   \f   form-feed.

   \n   newline.

   \r   carriage return.

   \t   horizontal tab.

   \v   vertical tab.

   \xhex digits
        The  character  represented  by the string of hexadecimal digits following the \x.  As in ANSI C, all following hexadecimal
        digits are considered part of the escape sequence.  (This feature should tell us something about language design by commit‐
        tee.)  E.g., "\x1B" is the ASCII ESC (escape) character.

   \ddd The character represented by the 1-, 2-, or 3-digit sequence of octal digits.  E.g., "\033" is the ASCII ESC (escape) char‐
        acter.

   \c   The literal character c.

   The escape sequences may also be used inside constant regular expressions (e.g., /[ \t\f\n\r\v]/ matches whitespace characters).

   In compatibility mode, the characters represented by octal and hexadecimal escape sequences are treated literally when  used  in
   regular expression constants.  Thus, /a\52b/ is equivalent to /a\*b/.

8.PATTERNS AND ACTIONS

   AWK  is  a  line-oriented  language.   The pattern comes first, and then the action.  Action statements are enclosed in { and }.
   Either the pattern may be missing, or the action may be missing, but, of course, not both.   If  the  pattern  is  missing,  the
   action is executed for every single record of input.  A missing action is equivalent to

          { print }

   which prints the entire record.

   Comments  begin  with  the # character, and continue until the end of the line.  Blank lines may be used to separate statements.
   Normally, a statement ends with a newline, however, this is not the case for lines ending in a comma, {, ?, :, &&, or ||.  Lines
   ending  in  do  or else also have their statements automatically continued on the following line.  In other cases, a line can be
   continued by ending it with a “\”, in which case the newline is ignored.

   Multiple statements may be put on one line by separating them with a “;”.  This applies to both the statements within the action
   part of a pattern-action pair (the usual case), and to the pattern-action statements themselves.

1.Patterns

   AWK patterns may be one of the following:

          BEGIN
          END
          BEGINFILE
          ENDFILE
          /regular expression/
          relational expression
          pattern && pattern
          pattern || pattern
          pattern ? pattern : pattern
          (pattern)
          ! pattern
          pattern1, pattern2

   BEGIN  and END are two special kinds of patterns which are not tested against the input.  The action parts of all BEGIN patterns
   are merged as if all the statements had been written in a single BEGIN block.  They are executed before  any  of  the  input  is
   read.  Similarly, all the END blocks are merged, and executed when all the input is exhausted (or when an exit statement is exe‐
   cuted).  BEGIN and END patterns cannot be combined with other patterns in pattern expressions.  BEGIN and  END  patterns  cannot
   have missing action parts.

   BEGINFILE  and ENDFILE are additional special patterns whose bodies are executed before reading the first record of each command
   line input file and after reading the last record of each file.  Inside the BEGINFILE rule, the value of ERRNO will be the empty
   string  if  the  file  could  be  opened  successfully.   Otherwise, there is some problem with the file and the code should use
   nextfile to skip it. If that is not done, gawk produces its usual fatal error for files that cannot be opened.

   For /regular expression/ patterns, the associated statement is executed for each input record that matches the  regular  expres‐
   sion.  Regular expressions are the same as those in egrep(1), and are summarized below.

   A relational expression may use any of the operators defined below in the section on actions.  These generally test whether cer‐
   tain fields match certain regular expressions.

   The &&, ||, and !  operators are logical AND, logical OR, and logical NOT, respectively, as in C.  They do short-circuit evalua‐
   tion,  also  as  in  C, and are used for combining more primitive pattern expressions.  As in most languages, parentheses may be
   used to change the order of evaluation.

   The ?: operator is like the same operator in C.  If the first pattern is true then the pattern used for testing  is  the  second
   pattern, otherwise it is the third.  Only one of the second and third patterns is evaluated.

   The  pattern1,  pattern2  form  of an expression is called a range pattern.  It matches all input records starting with a record
   that matches pattern1, and continuing until a record that matches pattern2, inclusive.  It does not combine with any other  sort
   of pattern expression.

2.Regular Expressions

   Regular expressions are the extended kind found in egrep.  They are composed of characters as follows:

   c          matches the non-metacharacter c.

   \c         matches the literal character c.

   .          matches any character including newline.

   ^          matches the beginning of a string.

   $          matches the end of a string.

   [abc...]   character list, matches any of the characters abc....

   [^abc...]  negated character list, matches any character except abc....

   r1|r2      alternation: matches either r1 or r2.

   r1r2       concatenation: matches r1, and then r2.

   r+         matches one or more r's.

   r*         matches zero or more r's.

   r?         matches zero or one r's.

   (r)        grouping: matches r.

   r{n}
   r{n,}
   r{n,m}     One  or two numbers inside braces denote an interval expression.  If there is one number in the braces, the preceding
              regular expression r is repeated n times.  If there are two numbers separated by a comma, r is repeated n to m times.
              If there is one number followed by a comma, then r is repeated at least n times.

   \y         matches the empty string at either the beginning or the end of a word.

   \B         matches the empty string within a word.

   \<         matches the empty string at the beginning of a word.

   \>         matches the empty string at the end of a word.

   \s         matches any whitespace character.

   \S         matches any nonwhitespace character.

   \w         matches any word-constituent character (letter, digit, or underscore).

   \W         matches any character that is not word-constituent.

   \`         matches the empty string at the beginning of a buffer (string).

   \'         matches the empty string at the end of a buffer.

   The escape sequences that are valid in string constants (see below) are also valid in regular expressions.

   Character  classes are a feature introduced in the POSIX standard.  A character class is a special notation for describing lists
   of characters that have a specific attribute, but where the actual characters themselves can vary from country to country and/or
   from  character  set  to  character  set.   For example, the notion of what is an alphabetic character differs in the USA and in
   France.

   A character class is only valid in a regular expression inside the brackets of a character list.  Character classes  consist  of
   [:, a keyword denoting the class, and :].  The character classes defined by the POSIX standard are:

   [:alnum:]  Alphanumeric characters.

   [:alpha:]  Alphabetic characters.

   [:blank:]  Space or tab characters.

   [:cntrl:]  Control characters.

   [:digit:]  Numeric characters.

   [:graph:]  Characters that are both printable and visible.  (A space is printable, but not visible, while an a is both.)

   [:lower:]  Lowercase alphabetic characters.

   [:print:]  Printable characters (characters that are not control characters.)

   [:punct:]  Punctuation characters (characters that are not letter, digits, control characters, or space characters).

   [:space:]  Space characters (such as space, tab, and formfeed, to name a few).

   [:upper:]  Uppercase alphabetic characters.

   [:xdigit:] Characters that are hexadecimal digits.

   For  example,  before  the POSIX standard, to match alphanumeric characters, you would have had to write /[A-Za-z0-9]/.  If your
   character set had other alphabetic characters in it, this would not match them, and if your character set  collated  differently
   from  ASCII,  this  might  not  even  match  the ASCII alphanumeric characters.  With the POSIX character classes, you can write
   /[[:alnum:]]/, and this matches the alphabetic and numeric characters in your character set, no matter what it is.

   Two additional special sequences can appear in character lists.  These apply to non-ASCII character sets, which can have  single
   symbols  (called  collating  elements) that are represented with more than one character, as well as several characters that are
   equivalent for collating, or sorting, purposes.  (E.g., in French, a plain “e” and a grave-accented “`” are equivalent.)

   Collating Symbols
          A collating symbol is a multi-character collating element enclosed in [.  and .].  For example, if ch is a collating ele‐
          ment, then [[.ch.]]  is a regular expression that matches this collating element, while [ch] is a regular expression that
          matches either c or h.

   Equivalence Classes
          An equivalence class is a locale-specific name for a list of characters that are equivalent.  The name is enclosed in  [=
          and =].  For example, the name e might be used to represent all of “e,” “´,” and “`.”  In this case, [[=e=]] is a regular
          expression that matches any of e, ´, or `.

   These features are very valuable in non-English speaking locales.  The library functions that gawk uses for  regular  expression
   matching currently only recognize POSIX character classes; they do not recognize collating symbols or equivalence classes.

   The  \y,  \B,  \<, \>, \s, \S, \w, \W, \`, and \' operators are specific to gawk; they are extensions based on facilities in the
   GNU regular expression libraries.

   The various command line options control how gawk interprets characters in regular expressions.

   No options
          In the default case, gawk provide all the facilities of POSIX regular expressions and the GNU regular  expression  opera‐
          tors described above.

   --posix
          Only POSIX regular expressions are supported, the GNU operators are not special.  (E.g., \w matches a literal w).

   --traditional
          Traditional  Unix  awk  regular expressions are matched.  The GNU operators are not special, and interval expressions are
          not available.  Characters described by octal and hexadecimal escape sequences are treated literally, even if they repre‐
          sent regular expression metacharacters.

   --re-interval
          Allow interval expressions in regular expressions, even if --traditional has been provided.

3.Actions

   Action  statements are enclosed in braces, { and }.  Action statements consist of the usual assignment, conditional, and looping
   statements found in most languages.  The operators, control statements, and  input/output  statements  available  are  patterned
   after those in C.

4.Operators

   The operators in AWK, in order of decreasing precedence, are

   (...)       Grouping

   $           Field reference.

   ++ --       Increment and decrement, both prefix and postfix.

   ^           Exponentiation (** may also be used, and **= for the assignment operator).

   + - !       Unary plus, unary minus, and logical negation.

   * / %       Multiplication, division, and modulus.

   + -         Addition and subtraction.

   space       String concatenation.

   |   |&      Piped I/O for getline, print, and printf.

   < > <= >= != ==
               The regular relational operators.

   ~ !~        Regular  expression  match,  negated match.  NOTE: Do not use a constant regular expression (/foo/) on the left-hand
               side of a ~ or !~.  Only use one on the right-hand side.  The expression /foo/ ~ exp has the same meaning as (($0  ~
               /foo/) ~ exp).  This is usually not what was intended.

   in          Array membership.

   &&          Logical AND.

   ||          Logical OR.

   ?:          The  C conditional expression.  This has the form expr1 ? expr2 : expr3.  If expr1 is true, the value of the expres‐
               sion is expr2, otherwise it is expr3.  Only one of expr2 and expr3 is evaluated.

   = += -= *= /= %= ^=
               Assignment.  Both absolute assignment (var = value) and operator-assignment (the other forms) are supported.

5.Control Statements

   The control statements are as follows:

          if (condition) statement [ else statement ]
          while (condition) statement
          do statement while (condition)
          for (expr1; expr2; expr3) statement
          for (var in array) statement
          break
          continue
          delete array[index]
          delete array
          exit [ expression ]
          { statements }
          switch (expression) {
          case value|regex : statement
          ...
          [ default: statement ]
          }

6.I/O Statements

   The input/output statements are as follows:

   close(file [, how])   Close file, pipe or co-process.  The optional how should only be used when closing one end  of  a  two-way
                         pipe to a co-process.  It must be a string value, either "to" or "from".

   getline               Set $0 from next input record; set NF, NR, FNR.

   getline file Print  expressions  on  file.   Each expression is separated by the value of the OFS variable.  The output
                         record is terminated with the value of the ORS variable.

   printf fmt, expr-list Format and print.  See The printf Statement, below.

   printf fmt, expr-list >file
                         Format and print on file.

   system(cmd-line)      Execute the command cmd-line, and return the exit status.  (This may not be available  on  non-POSIX  sys‐
                         tems.)

   fflush([file])        Flush any buffers associated with the open output file or pipe file.  If file is missing, then flush stan‐
                         dard output.  If file is the null string, then flush all open output files and pipes.

   Additional output redirections are allowed for print and printf.

   print ... >> file
          Appends output to the file.

   print ... | command
          Writes on a pipe.

   print ... |& command
          Sends data to a co-process or socket.  (See also the subsection Special File Names, below.)

   The getline command returns 1 on success, 0 on end of file, and -1 on an error.  Upon an error, ERRNO contains a string describ‐
   ing the problem.

   NOTE:  Failure  in  opening a two-way socket will result in a non-fatal error being returned to the calling function. If using a
   pipe, co-process, or socket to getline, or from print or printf within a loop, you must use close() to create new  instances  of
   the command or socket.  AWK does not automatically close pipes, sockets, or co-processes when they return EOF.

7. The printf Statement

   The  AWK  versions of the printf statement and sprintf() function (see below) accept the following conversion specification for‐
   mats:

   %c      A single character.  If the argument used for %c is numeric, it is treated as a character and printed.   Otherwise,  the
           argument is assumed to be a string, and the only first character of that string is printed.

   %d, %i  A decimal number (the integer part).

   %e, %E  A floating point number of the form [-]d.dddddde[+-]dd.  The %E format uses E instead of e.

   %f, %F  A  floating point number of the form [-]ddd.dddddd.  If the system library supports it, %F is available as well. This is
           like %f, but uses capital letters for special “not a number” and “infinity” values. If %F is not  available,  gawk  uses
           %f.

   %g, %G  Use  %e  or %f conversion, whichever is shorter, with nonsignificant zeros suppressed.  The %G format uses %E instead of
           %e.

   %o      An unsigned octal number (also an integer).

   %u      An unsigned decimal number (again, an integer).

   %s      A character string.

   %x, %X  An unsigned hexadecimal number (an integer).  The %X format uses ABCDEF instead of abcdef.

   %%      A single % character; no argument is converted.

   Optional, additional parameters may lie between the % and the control letter:

   count$ Use the count'th argument at this point in the formatting.  This is called a positional specifier and is intended primar‐
          ily  for  use  in translated versions of format strings, not in the original text of an AWK program.  It is a gawk exten‐
          sion.

   -      The expression should be left-justified within its field.

   space  For numeric conversions, prefix positive values with a space, and negative values with a minus sign.

   +      The plus sign, used before the width modifier (see below), says to always supply a sign for numeric conversions, even  if
          the data to be formatted is positive.  The + overrides the space modifier.

   #      Use an “alternate form” for certain control letters.  For %o, supply a leading zero.  For %x, and %X, supply a leading 0x
          or 0X for a nonzero result.  For %e, %E, %f and %F, the result always contains a decimal point.  For %g, and %G, trailing
          zeros are not removed from the result.

   0      A  leading  0  (zero) acts as a flag, that indicates output should be padded with zeroes instead of spaces.  This applies
          only to the numeric output formats.  This flag only has an effect when the field width is wider  than  the  value  to  be
          printed.

   width  The  field should be padded to this width.  The field is normally padded with spaces.  If the 0 flag has been used, it is
          padded with zeroes.

   .prec  A number that specifies the precision to use when printing.  For the %e, %E, %f and %F, formats, this specifies the  num‐
          ber  of  digits you want printed to the right of the decimal point.  For the %g, and %G formats, it specifies the maximum
          number of significant digits.  For the %d, %i, %o, %u, %x, and %X formats, it specifies the minimum number of  digits  to
          print.  For %s, it specifies the maximum number of characters from the string that should be printed.

   The dynamic width and prec capabilities of the ANSI C printf() routines are supported.  A * in place of either the width or prec
   specifications causes their values to be taken from the argument list to printf or sprintf().  To  use  a  positional  specifier
   with a dynamic width or precision, supply the count$ after the * in the format string.  For example, "%3$*2$.*1$s".

   ### 8.   Special File Names
   When  doing I/O redirection from either print or printf into a file, or via getline from a file, gawk recognizes certain special
   filenames internally.  These filenames allow access to open file descriptors inherited from gawk's parent process  (usually  the
   shell).  These file names may also be used on the command line to name data files.  The filenames are:

   /dev/stdin  The standard input.

   /dev/stdout The standard output.

   /dev/stderr The standard error output.

   /dev/fd/n   The file associated with the open file descriptor n.

   These are particularly useful for error messages.  For example:

          print "You blew it!" > "/dev/stderr"

   whereas you would otherwise have to use

          print "You blew it!" | "cat 1>&2"

   The following special filenames may be used with the |& co-process operator for creating TCP/IP network connections:

   /inet/tcp/lport/rhost/rport
   /inet4/tcp/lport/rhost/rport
   /inet6/tcp/lport/rhost/rport
          Files for a TCP/IP connection on local port lport to remote host rhost on remote port rport.  Use a port of 0 to have the
          system pick a port.  Use /inet4 to force an IPv4 connection, and /inet6 to force an IPv6 connection.   Plain  /inet  uses
          the system default (most likely IPv4).

   /inet/udp/lport/rhost/rport
   /inet4/udp/lport/rhost/rport
   /inet6/udp/lport/rhost/rport
          Similar, but use UDP/IP instead of TCP/IP.

          ### 9.   Numeric Functions
   AWK has the following built-in arithmetic functions:

   atan2(y, x)   Return the arctangent of y/x in radians.

   cos(expr)     Return the cosine of expr, which is in radians.

   exp(expr)     The exponential function.

   int(expr)     Truncate to integer.

   log(expr)     The natural logarithm function.

   rand()        Return a random number N, between 0 and 1, such that 0 ≤ N < 1.

   sin(expr)     Return the sine of expr, which is in radians.

   sqrt(expr)    The square root function.

   srand([expr]) Use  expr  as  the  new  seed  for the random number generator.  If no expr is provided, use the time of day.  The
                 return value is the previous seed for the random number generator.

                 ### 10.   String Functions
   Gawk has the following built-in string functions:

   asort(s [, d [, how] ]) Return the number of elements in the source array s.  Sort the contents of s using gawk's  normal  rules
                           for  comparing  values, and replace the indices of the sorted values s with sequential integers starting
                           with 1. If the optional destination array d is specified, then first duplicate s into d, and  then  sort
                           d,  leaving  the indices of the source array s unchanged. The optional string how controls the direction
                           and the comparison mode.  Valid values for how are any of the strings valid  for  PROCINFO["sorted_in"].
                           It can also be the name of a user-defined comparison function as described in PROCINFO["sorted_in"].

   asorti(s [, d [, how] ])
                           Return  the  number  of  elements  in  the source array s.  The behavior is the same as that of asort(),
                           except that the array indices are used for sorting, not the array  values.   When  done,  the  array  is
                           indexed  numerically,  and  the values are those of the original indices.  The original values are lost;
                           thus provide a second array if you wish to preserve the original.  The purpose of  the  optional  string
                           how is the same as described in asort() above.

   gensub(r, s, h [, t])   Search  the  target string t for matches of the regular expression r.  If h is a string beginning with g
                           or G, then replace all matches of r with s.  Otherwise, h is a number indicating which  match  of  r  to
                           replace.  If t is not supplied, use $0 instead.  Within the replacement text s, the sequence \n, where n
                           is a digit from 1 to 9, may be used to indicate just the text that matched the n'th parenthesized subex‐
                           pression.   The  sequence  \0 represents the entire matched text, as does the character &.  Unlike sub()
                           and gsub(), the modified string is returned as the result of  the  function,  and  the  original  target
                           string is not changed.

   gsub(r, s [, t])        For  each  substring  matching  the  regular  expression r in the string t, substitute the string s, and
                           return the number of substitutions.  If t is not supplied, use $0.  An &  in  the  replacement  text  is
                           replaced  with  the  text that was actually matched.  Use \& to get a literal &.  (This must be typed as
                           "\\&"; see GAWK: Effective AWK Programming for a fuller discussion of the rules for &'s and  backslashes
                           in the replacement text of sub(), gsub(), and gensub().)

   index(s, t)             Return  the index of the string t in the string s, or 0 if t is not present.  (This implies that charac‐
                           ter indices start at one.)

   length([s])             Return the length of the string s, or the length of $0 if s is not supplied.  As a  non-standard  exten‐
                           sion, with an array argument, length() returns the number of elements in the array.

   match(s, r [, a])       Return  the  position  in s where the regular expression r occurs, or 0 if r is not present, and set the
                           values of RSTART and RLENGTH.  Note that the argument order is the same as for the ~ operator: str ~ re.
                           If  array  a  is  provided, a is cleared and then elements 1 through n are filled with the portions of s
                           that match the corresponding parenthesized subexpression in r.  The 0'th element of a contains the  por‐
                           tion of s matched by the entire regular expression r.  Subscripts a[n, "start"], and a[n, "length"] pro‐
                           vide the starting index in the string and length respectively, of each matching substring.

   patsplit(s, a [, r [, seps] ])
                           Split the string s into the array a and the separators array seps  on  the  regular  expression  r,  and
                           return the number of fields.  Element values are the portions of s that matched r.  The value of seps[i]
                           is the separator that appeared in front of a[i+1].  If r is omitted, FPAT is used instead.  The arrays a
                           and  seps  are  cleared  first.   Splitting  behaves identically to field splitting with FPAT, described
                           above.

   split(s, a [, r [, seps] ])
                           Split the string s into the array a and the separators array seps  on  the  regular  expression  r,  and
                           return  the  number  of fields.  If r is omitted, FS is used instead.  The arrays a and seps are cleared
                           first.  seps[i] is the field separator matched by r between a[i] and a[i+1].  If r is  a  single  space,
                           then leading whitespace in s goes into the extra array element seps[0] and trailing whitespace goes into
                           the extra array element seps[n], where n is the return value of split(s, a, r, seps).  Splitting behaves
                           identically to field splitting, described above.

   sprintf(fmt, expr-list) Prints expr-list according to fmt, and returns the resulting string.

   strtonum(str)           Examine  str, and return its numeric value.  If str begins with a leading 0, strtonum() assumes that str
                           is an octal number.  If str begins with a leading 0x or 0X, strtonum() assumes that str is a hexadecimal
                           number.  Otherwise, decimal is assumed.

   sub(r, s [, t])         Just like gsub(), but replace only the first matching substring.

   substr(s, i [, n])      Return the at most n-character substring of s starting at i.  If n is omitted, use the rest of s.

   tolower(str)            Return  a  copy  of  the string str, with all the uppercase characters in str translated to their corre‐
                           sponding lowercase counterparts.  Non-alphabetic characters are left unchanged.

   toupper(str)            Return a copy of the string str, with all the lowercase characters in str  translated  to  their  corre‐
                           sponding uppercase counterparts.  Non-alphabetic characters are left unchanged.

   Gawk is multibyte aware.  This means that index(), length(), substr() and match() all work in terms of characters, not bytes.

   ### 11.   Time Functions
   Since  one  of  the  primary uses of AWK programs is processing log files that contain time stamp information, gawk provides the
   following functions for obtaining time stamps and formatting them.

   mktime(datespec)
             Turn datespec into a time stamp of the same form as returned by systime(), and return the result.  The datespec  is  a
             string  of  the  form  YYYY  MM  DD  HH MM SS[ DST].  The contents of the string are six or seven numbers representing
             respectively the full year including century, the month from 1 to 12, the day of the month from 1 to 31, the  hour  of
             the  day  from  0  to 23, the minute from 0 to 59, the second from 0 to 60, and an optional daylight saving flag.  The
             values of these numbers need not be within the ranges specified; for example, an hour of -1 means 1 hour  before  mid‐
             night.  The origin-zero Gregorian calendar is assumed, with year 0 preceding year 1 and year -1 preceding year 0.  The
             time is assumed to be in the local timezone.  If the daylight saving flag is positive, the time is assumed to be  day‐
             light  saving time; if zero, the time is assumed to be standard time; and if negative (the default), mktime() attempts
             to determine whether daylight saving time is in effect for the specified time.  If datespec does  not  contain  enough
             elements or if the resulting time is out of range, mktime() returns -1.

   strftime([format [, timestamp[, utc-flag]]])
             Format  timestamp  according  to the specification in format.  If utc-flag is present and is non-zero or non-null, the
             result is in UTC, otherwise the result is in local time.  The timestamp should be of the same form as returned by sys‐
             time().   If timestamp is missing, the current time of day is used.  If format is missing, a default format equivalent
             to the output of date(1) is used.  The default format is available in PROCINFO["strftime"].  See the specification for
             the strftime() function in ANSI C for the format conversions that are guaranteed to be available.

   systime() Return the current time of day as the number of seconds since the Epoch (1970-01-01 00:00:00 UTC on POSIX systems).

   ### 12.   Bit Manipulations Functions
   Gawk supplies the following bit manipulation functions.  They work by converting double-precision floating point values to uint‐
   max_t integers, doing the operation, and then converting the result back to floating point.  The functions are:

   and(v1, v2)         Return the bitwise AND of the values provided by v1 and v2.

   compl(val)          Return the bitwise complement of val.

   lshift(val, count)  Return the value of val, shifted left by count bits.

   or(v1, v2)          Return the bitwise OR of the values provided by v1 and v2.

   rshift(val, count)  Return the value of val, shifted right by count bits.

   xor(v1, v2)         Return the bitwise XOR of the values provided by v1 and v2.

   ### 13.   Type Function
   The following function is for use with multidimensional arrays.

   isarray(x)
          Return true if x is an array, false otherwise.

          ### 14.   Internationalization Functions
   The following functions may be used from within your AWK program for translating strings at run-time.   For  full  details,  see
   GAWK: Effective AWK Programming.

   bindtextdomain(directory [, domain])
          Specify  the  directory where gawk looks for the .mo files, in case they will not or cannot be placed in the ``standard''
          locations (e.g., during testing).  It returns the directory where domain is ``bound.''
          The default domain is the value of TEXTDOMAIN.  If directory is the null string (""), then bindtextdomain()  returns  the
          current binding for the given domain.

   dcgettext(string [, domain [, category]])
          Return the translation of string in text domain domain for locale category category.  The default value for domain is the
          current value of TEXTDOMAIN.  The default value for category is "LC_MESSAGES".
          If you supply a value for category, it must be a string equal to one of the known locale categories  described  in  GAWK:
          Effective AWK Programming.  You must also supply a text domain.  Use TEXTDOMAIN if you want to use the current domain.

   dcngettext(string1 , string2 , number [, domain [, category]])
          Return  the  plural form used for number of the translation of string1 and string2 in text domain domain for locale cate‐
          gory category.  The default value for domain is the current value of TEXTDOMAIN.   The  default  value  for  category  is
          "LC_MESSAGES".
          If  you  supply  a value for category, it must be a string equal to one of the known locale categories described in GAWK:
          Effective AWK Programming.  You must also supply a text domain.  Use TEXTDOMAIN if you want to use the current domain.

9.USER-DEFINED FUNCTIONS

   Functions in AWK are defined as follows:

          function name(parameter list) { statements }

   Functions are executed when they are called from within expressions in either patterns or actions.  Actual  parameters  supplied
   in  the  function  call are used to instantiate the formal parameters declared in the function.  Arrays are passed by reference,
   other variables are passed by value.

   Since functions were not originally part of the AWK language, the provision for local  variables  is  rather  clumsy:  They  are
   declared as extra parameters in the parameter list.  The convention is to separate local variables from real parameters by extra
   spaces in the parameter list.  For example:

          function  f(p, q,     a, b)   # a and b are local
          {
               ...
          }

          /abc/     { ... ; f(1, 2) ; ... }

   The left parenthesis in a function call is required to immediately follow the function name, without any intervening whitespace.
   This  avoids  a  syntactic ambiguity with the concatenation operator.  This restriction does not apply to the built-in functions
   listed above.

   Functions may call each other and may be recursive.  Function parameters used as local variables are  initialized  to  the  null
   string and the number zero upon function invocation.

   Use  return  expr  to return a value from a function.  The return value is undefined if no value is provided, or if the function
   returns by “falling off” the end.

   As a gawk extension, functions may be called indirectly. To do this, assign the name of the function to be called, as a  string,
   to a variable.  Then use the variable as if it were the name of a function, prefixed with an @ sign, like so:
          function  myfunc()
          {
               print "myfunc called"
               ...
          }

          {    ...
               the_func = "myfunc"
               @the_func()    # call through the_func to myfunc
               ...
          }

   If  --lint  has  been provided, gawk warns about calls to undefined functions at parse time, instead of at run time.  Calling an
   undefined function at run time is a fatal error.

   The word func may be used in place of function.

10.DYNAMICALLY LOADING NEW FUNCTIONS

   You can dynamically add new built-in functions to the running gawk interpreter.  The full details are beyond the scope  of  this
   manual page; see GAWK: Effective AWK Programming for the details.

   extension(object, function)
           Dynamically  link the shared object file named by object, and invoke function in that object, to perform initialization.
           These should both be provided as strings.  Return the value returned by function.

   Using this feature at the C level is not pretty, but it is unlikely to go away. Additional  mechanisms  may  be  added  at  some
   point.

11.SIGNALS

   pgawk  accepts  two  signals.   SIGUSR1 causes it to dump a profile and function call stack to the profile file, which is either
   awkprof.out, or whatever file was named with the --profile option.  It then continues to run.  SIGHUP causes pgawk to  dump  the
   profile and function call stack and then exit.

12.INTERNATIONALIZATION

   String constants are sequences of characters enclosed in double quotes.  In non-English speaking environments, it is possible to
   mark strings in the AWK program as requiring translation to the local natural language. Such strings are marked in the AWK  pro‐
   gram with a leading underscore (“_”).  For example,

          gawk 'BEGIN { print "hello, world" }'

   always prints hello, world.  But,

          gawk 'BEGIN { print _"hello, world" }'

   might print bonjour, monde in France.

   There are several steps involved in producing and running a localizable AWK program.

   1.  Add  a  BEGIN action to assign a value to the TEXTDOMAIN variable to set the text domain to a name associated with your pro‐
       gram:

       BEGIN { TEXTDOMAIN = "myprog" }

   This allows gawk to find the .mo file associated with your program.  Without this step, gawk  uses  the  messages  text  domain,
   which likely does not contain translations for your program.

   2.  Mark all strings that should be translated with leading underscores.

   3.  If necessary, use the dcgettext() and/or bindtextdomain() functions in your program, as appropriate.

   4.  Run gawk --gen-pot -f myprog.awk > myprog.pot to generate a .po file for your program.

   5.  Provide appropriate translations, and build and install the corresponding .mo files.

   The internationalization features are described in full detail in GAWK: Effective AWK Programming.

13.POSIX COMPATIBILITY

   A  primary goal for gawk is compatibility with the POSIX standard, as well as with the latest version of UNIX awk.  To this end,
   gawk incorporates the following user visible features which are not described in the AWK book, but are part of the Bell  Labora‐
   tories version of awk, and are in the POSIX standard.

   The  book indicates that command line variable assignment happens when awk would otherwise open the argument as a file, which is
   after the BEGIN block is executed.  However, in earlier implementations, when such an assignment appeared before any file names,
   the  assignment  would  happen  before  the  BEGIN  block was run.  Applications came to depend on this “feature.”  When awk was
   changed to match its documentation, the -v option for assigning variables before program  execution  was  added  to  accommodate
   applications  that  depended  upon  the  old  behavior.  (This feature was agreed upon by both the Bell Laboratories and the GNU
   developers.)

   When processing arguments, gawk uses the special option “--” to signal the end of arguments.  In compatibility  mode,  it  warns
   about  but  otherwise ignores undefined options.  In normal operation, such arguments are passed on to the AWK program for it to
   process.

   The AWK book does not define the return value of srand().  The POSIX standard has it return the seed  it  was  using,  to  allow
   keeping track of random number sequences.  Therefore srand() in gawk also returns its current seed.

   Other  new features are: The use of multiple -f options (from MKS awk); the ENVIRON array; the \a, and \v escape sequences (done
   originally in gawk and fed back into the Bell Laboratories version); the tolower() and toupper() built-in  functions  (from  the
   Bell Laboratories version); and the ANSI C conversion specifications in printf (done first in the Bell Laboratories version).

14.HISTORICAL FEATURES

   There is one feature of historical AWK implementations that gawk supports: It is possible to call the length() built-in function
   not only with no argument, but even without parentheses!  Thus,

          a = length     # Holy Algol 60, Batman!

   is the same as either of

          a = length()
          a = length($0)

   Using this feature is poor practice, and gawk issues a warning about its use if --lint is specified on the command line.

15.GNU EXTENSIONS

   Gawk has a number of extensions to POSIX awk.  They are described in this section.  All the extensions  described  here  can  be
   disabled by invoking gawk with the --traditional or --posix options.

   The following features of gawk are not available in POSIX awk.

   · No path search is performed for files named via the -f option.  Therefore the AWKPATH environment variable is not special.

   · There is no facility for doing file inclusion (gawk's @include mechanism).

   · The \x escape sequence.  (Disabled with --posix.)

   · The fflush() function.  (Disabled with --posix.)

   · The ability to continue lines after ?  and :.  (Disabled with --posix.)

   · Octal and hexadecimal constants in AWK programs.

   · The ARGIND, BINMODE, ERRNO, LINT, RT and TEXTDOMAIN variables are not special.

   · The IGNORECASE variable and its side-effects are not available.

   · The FIELDWIDTHS variable and fixed-width field splitting.

   · The FPAT variable and field splitting based on field values.

   · The PROCINFO array is not available.

   · The use of RS as a regular expression.

   · The special file names available for I/O redirection are not recognized.

   · The |& operator for creating co-processes.

   · The BEGINFILE and ENDFILE special patterns are not available.

   · The ability to split out individual characters using the null string as the value of FS, and as the third argument to split().

   · An optional fourth argument to split() to receive the separator texts.

   · The optional second argument to the close() function.

   · The optional third argument to the match() function.

   · The ability to use positional specifiers with printf and sprintf().

   · The ability to pass an array to length().

   · The use of delete array to delete the entire contents of an array.

   · The use of nextfile to abandon processing of the current input file.

   · The  and(),  asort(), asorti(), bindtextdomain(), compl(), dcgettext(), dcngettext(), gensub(), lshift(), mktime(), or(), pat‐
     split(), rshift(), strftime(), strtonum(), systime() and xor() functions.

   · Localizable strings.

   · Adding new built-in functions dynamically with the extension() function.

   The AWK book does not define the return value of the close() function.  Gawk's close() returns  the  value  from  fclose(3),  or
   pclose(3),  when closing an output file or pipe, respectively.  It returns the process's exit status when closing an input pipe.
   The return value is -1 if the named file, pipe or co-process was not opened with a redirection.

   When gawk is invoked with the --traditional option, if the fs argument to the -F option is “t”, then FS is set to the tab  char‐
   acter.   Note  that  typing  gawk  -F\t  ...  simply causes the shell to quote the “t,” and does not pass “\t” to the -F option.
   Since this is a rather ugly special case, it is not the default behavior.  This behavior also does not occur if --posix has been
   specified.  To really get a tab character as the field separator, it is best to use single quotes: gawk -F'\t' ....

16.ENVIRONMENT VARIABLES

   The  AWKPATH  environment  variable can be used to provide a list of directories that gawk searches when looking for files named
   via the -f and --file options.

   For socket communication, two special environment variables can be used to control the number  of  retries  (GAWK_SOCK_RETRIES),
   and  the interval between retries (GAWK_MSEC_SLEEP).  The interval is in milliseconds. On systems that do not support usleep(3),
   the value is rounded up to an integral number of seconds.

   If POSIXLY_CORRECT exists in the environment, then gawk behaves exactly as if --posix had been specified on  the  command  line.
   If --lint has been specified, gawk issues a warning message to this effect.

17.EXIT STATUS

   If the exit statement is used with a value, then gawk exits with the numeric value given to it.

   Otherwise,  if  there were no problems during execution, gawk exits with the value of the C constant EXIT_SUCCESS.  This is usu‐
   ally zero.

   If an error occurs, gawk exits with the value of the C constant EXIT_FAILURE.  This is usually one.

   If gawk exits because of a fatal error, the exit status is 2.  On non-POSIX systems, this value may be mapped to EXIT_FAILURE.

18.VERSION INFORMATION

   This man page documents gawk, version 4.0.

19.AUTHORS

   The original version of UNIX awk was designed and implemented by Alfred Aho, Peter Weinberger, and Brian Kernighan of Bell Labo‐
   ratories.  Brian Kernighan continues to maintain and enhance it.

   Paul Rubin and Jay Fenlason, of the Free Software Foundation, wrote gawk, to be compatible with the original version of awk dis‐
   tributed in Seventh Edition UNIX.  John Woods contributed a number of bug fixes.  David Trueman, with contributions from  Arnold
   Robbins, made gawk compatible with the new version of UNIX awk.  Arnold Robbins is the current maintainer.

   The  initial  DOS port was done by Conrad Kwok and Scott Garfinkle.  Scott Deifik maintains the port to MS-DOS using DJGPP.  Eli
   Zaretskii maintains the port to MS-Windows using MinGW.  Pat Rankin did the port to VMS, and Michal Jaegermann did the  port  to
   the  Atari ST.  The port to OS/2 was done by Kai Uwe Rommel, with contributions and help from Darrel Hankerson.  Andreas Buening
   now maintains the OS/2 port.  The late Fred Fish supplied support for the Amiga,  and  Martin  Brown  provided  the  BeOS  port.
   Stephen  Davies  provided  the  original Tandem port, and Matthew Woehlke provided changes for Tandem's POSIX-compliant systems.
   Dave Pitts provided the port to z/OS.

   See the README file in the gawk distribution for up-to-date information about maintainers and which  ports  are  currently  sup‐
   ported.

20.BUG REPORTS

   If  you find a bug in gawk, please send electronic mail to [email protected].  Please include your operating system and its revi‐
   sion, the version of gawk (from gawk --version), which C compiler you used to compile it, and a test program and data  that  are
   as small as possible for reproducing the problem.

   Before sending a bug report, please do the following things.  First, verify that you have the latest version of gawk.  Many bugs
   (usually subtle ones) are fixed at each release, and if yours is out of date, the problem may already have been solved.  Second,
   please  see  if  setting the environment variable LC_ALL to LC_ALL=C causes things to behave as you expect. If so, it's a locale
   issue, and may or may not really be a bug.  Finally, please read this man page and the reference manual  carefully  to  be  sure
   that what you think is a bug really is, instead of just a quirk in the language.

   Whatever you do, do NOT post a bug report in comp.lang.awk.  While the gawk developers occasionally read this newsgroup, posting
   bug reports there is an unreliable way to report bugs.  Instead, please use the electronic mail addresses given above.

   If you're using a GNU/Linux or BSD-based system, you may wish to submit a bug report to the vendor of your distribution.  That's
   fine,  but please send a copy to the official email address as well, since there's no guarantee that the bug report will be for‐
   warded to the gawk maintainer.

21.BUGS

   The -F option is not necessary given the command line variable assignment feature; it remains only for backwards compatibility.

   Syntactically invalid single character programs tend to overflow the parse stack, generating a rather unhelpful  message.   Such
   programs are surprisingly difficult to diagnose in the completely general case, and the effort to do so really is not worth it.

22.SEE ALSO

   egrep(1), getpid(2), getppid(2), getpgrp(2), getuid(2), geteuid(2), getgid(2), getegid(2), getgroups(2), usleep(3)

   The AWK Programming Language, Alfred V. Aho, Brian W. Kernighan, Peter J. Weinberger, Addison-Wesley, 1988.  ISBN 0-201-07981-X.

   GAWK:  Effective  AWK Programming, Edition 4.0, shipped with the gawk source.  The current version of this document is available
   online at http://www.gnu.org/software/gawk/manual.

23.EXAMPLES

   Print and sort the login names of all users:

        BEGIN     { FS = ":" }
             { print $1 | "sort" }

   Count lines in a file:

             { nlines++ }
        END  { print nlines }

   Precede each line by its number in the file:

        { print FNR, $0 }

   Concatenate and line number (a variation on a theme):

        { print NR, $0 }

   Run an external command for particular lines of data:

        tail -f access_log |
        awk '/myhome.html/ { system("nmap " $1 ">> logdir/myhome.html") }'

24.ACKNOWLEDGEMENTS

   Brian Kernighan of Bell Laboratories provided valuable assistance during testing and debugging.  We thank him.

25.COPYING PERMISSIONS

   Copyright © 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2001, 2002, 2003, 2004, 2005,  2007,  2009,  2010,  2011
   Free Software Foundation, Inc.

   Permission  is granted to make and distribute verbatim copies of this manual page provided the copyright notice and this permis‐
   sion notice are preserved on all copies.

   Permission is granted to copy and distribute modified versions of this manual page under the conditions  for  verbatim  copying,
   provided that the entire resulting derived work is distributed under the terms of a permission notice identical to this one.

   Permission  is granted to copy and distribute translations of this manual page into another language, under the above conditions
   for modified versions, except that this permission notice may be stated in a translation approved by the Foundation.

Free Software Foundation Nov 10 2011 GAWK(1)

你可能感兴趣的:(awk,编程)