在正常情况下,TCP要经过三次握手建立连接,,四次挥手断开连接
详情戳:TCP三次握手四次挥手
UDP协议是IP协议在传输层的“傀儡”,用来实现数据包形式的通信。而TCP协议则实现了“流”形式的通信。
TCP协议是传输层协议,实现的是端口到端口(port)的通信。我们知道,计算机数据的本质是有序的 0/1
序列(如果以byte为单位,就叫做文本流),计算机的功能就是储存和处理文本流。CPU + memory + 存储设备实现了文本流在同一台计算机内部的加工处理。通过一些IO,比如屏幕和键盘,文本流实现了人机交互。而进一步,如果网络通信可在不同计算机之间进行文本流的交互,那么我们就和整个计算机系统的数据处理方式实现了对接。
IP协议和UDP协议采用的是数据包的方式传送,后发出的数据包可能早到,我们并不能保证数据到达的次序。TCP协议确保了数据到达的顺序与文本流顺序相符。当计算机从TCP协议的接口读取数据时,这些数据已经是排列好顺序的“流”了。
比如我们有一个大文件要从本地主机发送到远程主机,如果是按照TCP“流”接收到的话,我们可以一边接收,一边将文本流存入文件系统。这样,等到“流”接收完了,硬盘写入操作也已经完成。如果采取UDP的传输方式,我们需要等到所有的数据到达后,进行排序,才能组装成大的文件。这种情况下,我们不得不使用大量的计算机资源来存储已经到达的数据,直到所有数据都达到了,才能开始处理。
“流”的要点是次序
(order),然而实现这一点并不简单。TCP协议是基于IP协议的,所以最终数据传送还是以IP数据包为单位进行的。如果一个文本流很长的话,我们不可能将整个文本流放入到一个IP数据包中,那样有可能会超过MTU。
所以,TCP协议封装到IP包的不是整个文本流,而是TCP协议所规定的片段(segment)。与之前的一个IP或者UDP数据包类似,一个TCP片段同样分为头部(header)和数据(payload)两部分 (“片段”这个名字更多是起提醒作用:嘿,这里并不是完整的文本流)。整个文本流按照次序被分成小段,而每一段被放入TCP片段的数据部分。一个TCP片段封装成的IP包不超过整个IP接力路径上的最小MTU,从而避免令人痛苦的碎片化(fragmentation)。
(给文本流分段是在发送主机完成的,而碎片化是在网络中的路由器完成的。路由器要处理许多路的通信,所以相当繁忙。文本流提前在发送主机分好段,可以避免在路由器上执行碎片化,可大大减小网络负担)
TCP片段的头部(header)会存有该片段的序号
(sequence number)。这样,接收的计算机就可以知道接收到的片段在原文本流中的顺序了,也可以知道自己下一步需要接收哪个片段以形成流。比如已经接收到了片段1,片段2,片段3,那么接收主机就开始期待片段4。如果接收到不符合顺序的数据包(比如片段8),接收方的TCP模块可以拒绝接收,从而保证呈现给接收主机的信息是符合次序的“流”。
片段编号这个初步的想法并不能解决我们所有的问题。IP协议是不可靠的,所以IP数据包可能在传输过程中发生错误或者丢失。而IP传输是"Best Effort" 式的,如果发生异常情况,我们的IP数据包就会被轻易的丢弃掉。另一方面,如果乱序(out-of-order)片段到达,根据我们上面说的,接收主机不会接收。这样,错误片段、丢失片段和被拒片段的联手破坏之下,接收主机只可能收到一个充满“漏洞”的文本流。
TCP的补救方法是,在每收到一个正确的、符合次序的片段之后,就向发送方(也就是连接的另一段)发送一个特殊的TCP片段,用来知会(ACK,acknowledge)发送方:我已经收到那个片段了。这个特殊的TCP片段叫做ACK回复。如果一个片段序号为L,对应ACK回复有回复号L+1,也就是接收方期待接收的下一个发送片段的序号。
如果发送方在一定时间等待之后,还是没有收到ACK回复,那么它推断之前发送的片段一定发生了异常。发送方会重复发送(retransmit)那个出现异常的片段,等待ACK回复,如果还没有收到,那么再重复发送原片段… 直到收到该片段对应的ACK回复(回复号为L+1的ACK)。
每一个ACK都带有对应的确认序列号,意思是告诉发送者,我已经收到了哪些数据;下一次你从哪里开始发
分为两种情况
序列号
,就可以很容易做到去重
的效果。超时的时间如何确定?
最理想的情况下,找到一个最小的时间,保证 “确认应答一定能在这个时间内返回”。
但是这个时间的长短,随着网络环境的不同,是有差异的。
如果超时时间设的太长,会影响整体的重传效率;
如果超时时间设的太短,有可能会频繁发送重复的包;
TCP为了保证无论在任何环境下都能比较高性能的通信,因此会动态计算这个最大超时时间.
通过ACK回复和超时重传机制,TCP协议将片段传输变得可靠。尽管底盘是不可靠的IP协议,但TCP协议以一种“不放弃的精神”,不断尝试,最终成功。(技术也可以很励志)
TCP协议和UDP协议走了两个极端。TCP协议复杂但可靠,UDP协议轻便但不可靠。在处理异常的时候,TCP极端负责,而UDP一副无所谓的样子。
上面的工作方式中,发送方保持 发送->等待ACK->发送->等待ACK… 的单线工作方式,这样的工作方式叫做 stop-and-wait。stop-and-wait虽然实现了TCP通信的可靠性,但同时牺牲了网络通信的效率。
在等待ACK的时间段内,我们的网络都处于闲置(idle)状态。我们希望有一种方式,可以同时发送出多个片段。然而如果同时发出多个片段,那么由于IP包传送是无次序的,有可能会生成乱序片段(out-of-order),也就是后发出的片段先到达。
在stop-and-wait的工作方式下,乱序片段完全被拒绝,这也很不效率。毕竟,乱序片段只是提前到达的片段。我们可以在缓存中先存放它,等到它之前的片段补充完毕,再将它缀在后面。然而,如果一个乱序片段实在是太过提前(太“乱”了),该片段将长时间占用缓存。我们需要一种折中的方法来解决该问题:利用缓存保留一些“不那么乱”的片段,期望能在段时间内补充上之前的片段(暂不处理,但发送相应的ACK);对于“乱”的比较厉害的片段,则将它们拒绝(不处理,也不发送对应的ACK)。
滑动窗口
(sliding window)被同时应用于接收方和发送方,以解决以上问题。发送方和接收方各有一个滑窗。当片段位于滑窗中时,表示TCP正在处理该片段。滑窗中可以有多个片段,也就是可以同时处理多个片段。滑窗越大,越大的滑窗同时处理的片段数目越多(当然,计算机也必须分配出更多的缓存供滑窗使用)。假设一个可以容纳三个片段的滑窗,并假设片段从左向右排列。对于发送方来说,滑窗的左侧为已发送并已ACK过的片段序列,滑窗右侧是尚未发送的片段序列。滑窗中的片段(比如片段5,6,7)被发送出去,并等待相应的ACK。如果收到片段5的ACK,滑窗将向右移动。这样,新的片段从右侧进入滑窗内,被发送出去,并进入等待状态。在接收到片段5的ACK之前,滑窗不会移动,即使已经收到了片段6和7的ACK。这样,就保证了滑窗左侧的序列是已经发送的、接收到ACK的、符合顺序的片段序列。
对于接收方来说,滑窗的左侧是已经正确收到并ACK回复过的片段(比如片段1,2,3,4),也就是正确接收到的文本流。滑窗中是期望接收的片段(比如片段5, 6, 7)。同样,如果片段6,7先到达,那么滑窗不会移动。如果片段5先到达,那么滑窗会向右移动,以等待接收新的片段。如果出现滑窗之外的片段,比如片段9,那么滑窗将拒绝接收。
那么如果出现了丢包, 如何进行重传?这里分两种情况讨论:
情况二:数据包丢了
- 当某一段报文段丢失之后,发送端会一直收到 1001 这样的ACK,就像是在提醒发送端 "我想要的是 1001"一样;
如果发送端主机连续三次收到了同样一个 “1001” 这样的应答,就会将对应的数据 1001 - 2000 重新发送;
这个时候接收端收到了 1001 之后,再次返回的ACK就是7001了(因为2001 - 7000)接收端其实之前就已经收到了, 被放到了接收端操作系统内核的接收缓冲区中;
这种机制被称为 “高速重发控制”(也叫 “快重传”)。
接收端处理数据的速度是有限的。如果发送端发的太快,导致接收端的缓冲区被打满,这个时候如果发送端继续发送,就会造成丢包,继而引起丢包重传等等一系列连锁反应。
因此TCP支持根据接收端的处理能力,来决定发送端的发送速度。这个机制就叫做流量控制(Flow Control);
窗口大小
” 字段,通过ACK端通知发送端;个16位窗口字段
, 就是存放了窗口大小信息;窗口扩大因子M
, 实际窗口大小是 窗口字段的值左移 M 位;在TCP协议中,我们使用连接记录TCP两端的状态,使用编号和分段
实现了TCP传输的有序
,使用滑动窗口
来实现了发送方和接收方处理能力的匹配,并使用重复发送
来实现TCP传输的可靠性。
有了上面的机制,我们只需要将TCP片段包装成IP包,扔到网络中就可以了。TCP协议的相关模块会帮我们处理各种可能出现的问题(比如排序,比如TCP片段丢失等等)。最初的TCP协议就是由上述的几大块构成的。
然而进入上世纪八十年代,网络变的繁忙。许多网络中出现了大量的堵塞。堵塞类似于现实中的堵车。网络被称为“信息高速公路”。许多汽车(IP包)在网络中行驶,并经过一个一个路口 (路由器),直到到达目的地。
一个路由器如果过度繁忙,会丢弃一些IP包。UDP协议不保证传输的可靠性,所以丢失就丢失了。而TCP协议需要保证传输的可靠性,当包含有TCP片段的IP包丢失时,TCP协议会重复发送TCP片段。于是,更多的“汽车”进入到公路中,原本繁忙的路由器变得更加繁忙,更多的IP包丢失。这样就构成了一个恶性循环。
这样的情况被称为堵塞崩溃
(congestion collapse)。每个发送方为了保证自己的发送质量,而不顾及公共领域现状,是造成堵塞崩溃的主要原因。当时的网络中高达90%的传输资源可能被堵塞崩溃所浪费。
TCP协议的堵塞控制是通过约束自己实现的。当TCP的发送方探测到网络交通拥堵时,会控制自己发送片段的速率,以缓解网络的交通状况,避免堵塞崩溃。
我们先来说明堵塞是如何探测的。在前面,我们已经总结了两种推测TCP片段丢失的方法:ACK超时
和重复ACK
。一旦发送方认为TCP片段丢失,则认为网络中出现堵塞。
另一方面,TCP发送方是如何控制发送速率
呢?TCP协议通过控制滑窗(sliding window)大小来控制发送速率。在前面,我们已经见到了一个窗口限制,就是接收缓冲区的剩余大小,以实现TCP流量控制。TCP还会维护一个拥塞窗口(congestion window size),以根据网络状况来调整滑窗大小。真实窗口大小取接收缓冲区剩余空间和拥塞窗口的最小值,从而同时满足两个限制 (流量控制和堵塞控制)。
像上面这样的拥塞窗口增长速度,是指数级别的。“慢启动” 只是指初使时慢,但是增长速度非常快。
少量的丢包,我们仅仅是触发超时重传;大量的丢包,我们就认为网络拥塞;
当TCP通信开始后,网络吞吐量会逐渐上升;随着网络发生拥堵,吞吐量会立刻下降;
拥塞控制,归根结底是TCP协议想尽可能快的把数据传输给对方,但是又要避免给网络造成太大压力的折中方案。
如果接收数据的主机立刻返回ACK应答,这时候返回的窗口可能比较小。
一定要记得,窗口越大,网络吞吐量就越大,传输效率就越高;我们的目标是在保证网络不拥塞的情况下尽量提高传输效率;
那么所有的包都可以延迟应答么?肯定也不是。
在延迟应答的基础上,我们发现,很多情况下,客户端服务器在应用层也是 “一发一收” 的。意味着客户端给服务器说了 “How are you”,服务器也会给客户端回一个 “Fine, thank you”;
那么这个时候ACK就可以搭顺风车,和服务器回应的 “Fine, thank you” 一起回给客户端