关于NCNN见NCNN cmake VS2017 编译
目前腾讯的NCNN没有tensorflow2ncnn的工具,目前有一种解决方案是把tensorflow的.pb模型转为coreml模型,接着转为onnx模型,最后转成NCNN。
下面提供一个tensorflow转NCNN的方法,据说在基于MobileNetV2修改的模型上测试通过,模型输出正确;我自己训练的基于ResNet结构的简单分类模型,用该方法试了,模型输出也正确。该方法的步骤如下:
1、使用freeze_graph.py生成.pb模型;参见【tensorflow】生成.pb文件
2、使用tf-coreml将tf模型转换为coreml模型
安装tf-coreml所需依赖项如下:
Python
tensorflow >= 1.5.0
coremltools >= 0.8
numpy >= 1.6.2
protobuf >= 3.1.0
因为我是windows,安装coremltools要用如下命令(电脑里要有安装git):
pip install git+https://github.com/apple/coremltools
pip install -U tfcoreml
tfcoreml安装好了,用如下脚本把tf的.pb模型转为coreml模型
import tfcoreml as tf_converter
tf_converter.convert(tf_model_path = r'C:\software\tensorflow-onnx-master\examples\WorkCardModel.pb',
mlmodel_path = r'C:\software\tensorflow-onnx-master\examples\my_model.mlmodel',
output_feature_names = ['resnet/predictions/Reshape_1:0'])
转换成功,会看到如下结果:
Core ML model generated. Saved at location: C:\software\tensorflow-onnx-master\examples\my_model.mlmodel
Core ML input(s):
[name: "input_x__0"
type {
multiArrayType {
shape: 3
shape: 96
shape: 96
dataType: DOUBLE
}
}
]
Core ML output(s):
[name: "resnet__predictions__Reshape_1__0"
type {
multiArrayType {
shape: 3
dataType: DOUBLE
}
}
]
3、使用WinMLTools将coreml转换为onnx模型
pip install -U winmltools
安装好winmltools之后,执行如下脚本:
from coremltools.models.utils import load_spec
from winmltools import convert_coreml
from winmltools.utils import save_model
# Load model file
model_coreml = load_spec(r'C:\software\tensorflow-onnx-master\examples\my_model.mlmodel')
# Convert it!
# The automatic code generator (mlgen) uses the name parameter to generate class names.
model_onnx = convert_coreml(model_coreml, 7, name='ExampleModel')
# Save the produced ONNX model in binary format
save_model(model_onnx, r'C:\software\tensorflow-onnx-master\examples\example.onnx')
4、在之前已经编译好的目录下C:\software\ncnn\build-vs2017\tools\onnx,使用onnx2ncnn将onnx模型转换为ncnn
# 默认生成ncnn.bin和ncnn.param
onnx2ncnn.exe example.onnx
# 或者制定名称
onnx2ncnn.exe example.onnx example.bin example.param
生成两个文件:ncnn.bin和ncnn.param
基于ncnn/examples里的squeezenet.cpp修改的三分类模型ncnn.bin和ncnn.param使用代码如下:
// Tencent is pleased to support the open source community by making ncnn available.
//
// Copyright (C) 2017 THL A29 Limited, a Tencent company. All rights reserved.
//
// Licensed under the BSD 3-Clause License (the "License"); you may not use this file except
// in compliance with the License. You may obtain a copy of the License at
//
// https://opensource.org/licenses/BSD-3-Clause
//
// Unless required by applicable law or agreed to in writing, software distributed
// under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR
// CONDITIONS OF ANY KIND, either express or implied. See the License for the
// specific language governing permissions and limitations under the License.
#include
#include
#include
#include
#include
#include
#include "platform.h"
#include "net.h"
#if NCNN_VULKAN
#include "gpu.h"
#endif // NCNN_VULKAN
static int detect_squeezenet(const cv::Mat& bgr, std::vector& cls_scores)
{
ncnn::Net squeezenet;
#if NCNN_VULKAN
squeezenet.opt.use_vulkan_compute = true;
#endif // NCNN_VULKAN
squeezenet.load_param("ncnn.param");
squeezenet.load_model("ncnn.bin");
ncnn::Mat in = ncnn::Mat::from_pixels_resize(bgr.data, ncnn::Mat::PIXEL_BGR, bgr.cols, bgr.rows, 96, 96);
const float mean_vals[3] = { 0.f, 0.f, 0.f };
const float norm_vals[3] = { 1.0 / 255, 1.0 / 255, 1.0 / 255 };
in.substract_mean_normalize(mean_vals, norm_vals);
ncnn::Extractor ex = squeezenet.create_extractor();
ex.input("input_x__0", in);
ncnn::Mat out;
ex.extract("resnet__predictions__Reshape_1__0", out);
cls_scores.resize(out.w);
for (int j = 0; j < out.w; j++)
{
cls_scores[j] = out[j];
}
return 0;
}
int main(int argc, char** argv)
{
if (argc != 2)
{
fprintf(stderr, "Usage: %s [imagepath]\n", argv[0]);
return -1;
}
const char* imagepath = argv[1];
cv::Mat m = cv::imread(imagepath, 1);
if (m.empty())
{
fprintf(stderr, "cv::imread %s failed\n", imagepath);
return -1;
}
#if NCNN_VULKAN
ncnn::create_gpu_instance();
#endif // NCNN_VULKAN
std::vector cls_scores;
double start, timeConsume;
start = static_cast(cv::getTickCount());
for (int i = 0; i < 1; i++)
detect_squeezenet(m, cls_scores);
for(int i = 0; i < 3; i++)
std::cout << cls_scores[i] << std::endl;
timeConsume = ((double)cv::getTickCount() - start) / cv::getTickFrequency();
printf("time: %f s\n", timeConsume);
#if NCNN_VULKAN
ncnn::destroy_gpu_instance();
#endif // NCNN_VULKAN
return 0;
}
参考:
将其他模型文件转化成Core ML模型文件(PB)
https://github.com/Tencent/ncnn/issues/5
tensorflow模型转ncnn模型
Convert ML models to ONNX with WinMLTools