我的理解:
散列表(哈希表)用的是数组支持按照下标随机访问数据的特性,所以散列表其实就是数组的一种扩展,由数组演化而来。可以说,如果没有数组,就没有散列表。
我们把编号转化为数组下标的映射方法就叫作散列函数(或“Hash 函数”“哈希函数”),而散列函数计算得到的值就叫作散列值(或“Hash 值”“哈希值”)。
散列表用的就是数组支持按照下标随机访问的时候,时间复杂度是 O(1) 的特性。
我们通过散列函数把元素的键值映射为下标,然后将数据存储在数组中对应下标的位置。当我们按照键值查询元素时,我们用同样的散列函数,将键值转化数组下标,从对应的数组下标的位置取数据。
装载因子
不管采用哪种探测方法,当散列表中空闲位置不多的时候,散列冲突的概率就会大大提高。为了尽可能保证散列表的操作效率,一般情况下,我们会尽可能保证散列表中有一定比例的空闲槽位。我们用装载因子来表示空位的多少。
装载因子的计算公式是:
散列表的装载因子 = 填入表中的元素个数 / 散列表的长度
复制代码
装载因子越大,说明空闲位置越少,冲突越多,散列表的性能会下降。
当数据量比较小、装载因子小的时候,适合采用开放寻址法。这也是 Java 中的ThreadLocalMap使用开放寻址法解决散列冲突的原因。
基于链表的散列冲突处理方法比较适合存储大对象、大数据量的散列表,而且,比起开放寻址法,它更加灵活,支持更多的优化策略,比如用红黑树代替链表。
如何设计一个散列表
我觉得应该有这样几点要求:
- 支持快速的查询、插入、删除操作;
- 内存占用合理,不能浪费过多的内存空间;
- 性能稳定,极端情况下,散列表的性能也不会退化到无法接受的情况。
设计一个合适的散列函数;
- 定义装载因子阈值,并且设计动态扩容策略;
- 选择合适的散列冲突解决方法。
理解
关于散列函数的设计,我们要尽可能让散列后的值随机且均匀分布,这样会尽可能地减少散列冲突,即便冲突之后,分配到每个槽内的数据也比较均匀。除此之外,散列函数的设计也不能太复杂,太复杂就会太耗时间,也会影响散列表的性能。
关于散列冲突解决方法的选择,我对比了开放寻址法和链表法两种方法的优劣和适应的场景。大部分情况下,链表法更加普适。而且,我们还可以通过将链表法中的链表改造成其他动态查找数据结构,比如红黑树,来避免散列表时间复杂度退化成 O(n),抵御散列碰撞攻击。但是,对于小规模数据、装载因子不高的散列表,比较适合用开放寻址法。
对于动态散列表来说,不管我们如何设计散列函数,选择什么样的散列冲突解决方法。随着数据的不断增加,散列表总会出现装载因子过高的情况。这个时候,我们就需要启动动态扩容。
哈希表是什么?
假如我们有 89 名选手参加学校运动会。为了方便记录成绩,每个选手胸前都会贴上自己的参赛号码。这 89 名选手的编号依次是 1 到 89。现在我们希望编程实现这样一个功能,通过编号快速找到对应的选手信息。你会怎么做呢?
我们可以把这 89 名选手的信息放在数组里。编号为 1 的选手,我们放到数组中下标为 1 的位置;编号为 2 的选手,我们放到数组中下标为 2 的位置。以此类推,编号为 k 的选手放到数组中下标为 k 的位置。
因为参赛编号跟数组下标一一对应,当我们需要查询参赛编号为 x 的选手的时候,我们只需要将下标为 x 的数组元素取出来就可以了,时间复杂度就是 O(1)。
实际上,这个例子已经用到了散列的思想。在这个例子里,参赛编号是自然数,并且与数组的下标形成一一映射,所以利用数组支持根据下标随机访问的时候,时间 复杂度是O(1)这一特性,就可以实现快速查找编号对应的选手信息。
假设校长说,参赛编号不能设置得这么简单,要加上年级、班级这些更详细的信息,所以我们把编号的规则稍微修改了一下,用 6 位数字来表示。比如 051167,其中,前两位 05 表示年级,中间两位 11 表示班级,最后两位还是原来的编号 1 到 89。这个时候我们该如何存储选手信息,才能够支持通过编号来快速查找选手信息呢?
思路还是跟前面类似。尽管我们不能直接把编号作为数组下标,但我们 可以截取参赛编号的后两位作为数组下标,来存取选手信息数据。当通过参赛编号查询选手信息的时候,我们用同样的方法,取参赛编号的后两位,作为数组下标,来读取数组中的数据。这就是典型的散列思想。其中,参赛选手的编号我们叫作键(key)或者关键字。我们用它来标识一个选手。我们把参赛编号转化为数组下标的映射方法就叫作散列函数(或“Hash 函数”“哈希函数”),而散列函数计算得到的值就叫作散列值(或“Hash 值”“哈希值”)。
通过这个例子,我们可以总结出这样的规律:
- 散列表用的就是数组支持按照下标随机访问的时候,时间复杂度是 O(1) 的特性。我们通过散列函数把元素的键值映射为下标,然后将数据存储在数组中对应下标的位置。当我们按照键值查询元素时,我们用同样的散列函数,将键值转化数组下标,从对应的数组下标的位置取数据。
散列函数
从上面的例子我们可以看到,散列函数在散列表中起着非常关键的作用。现在我们就来学习下散列函数。
散列函数,顾名思义,它是一个函数。我们可以把它定义成hash(key),其中 key 表示元素的键值,hash(key) 的值表示经过散列函数计算得到的散列值。
那第一个例子中,编号就是数组下标,所以 hash(key) 就等于 key。
int hash(String key) {
// 获取后两位字符
string lastTwoChars = key.substr(length-2, length);
// 将后两位字符转换为整数
int hashValue = convert lastTwoChas to int-type;
return hashValue;
}
复制代码
刚刚举的学校运动会的例子,散列函数比较简单,也比较容易想到。但是,如果参赛选手的编号是随机生成的 6 位数字,又或者用的是 a 到 z 之间的字符串,该如何构造散列函数呢?我总结了三点散列函数设计的基本要求:
- 散列函数计算得到的散列值是一个非负整数;
- 如果 key1 = key2,那 hash(key1) == hash(key2);
- 如果 key1 ≠ key2,那 hash(key1) ≠ hash(key2)。
散列冲突
再好的散列函数也无法避免散列冲突。那究竟该如何解决散列冲突问题呢?
1. 开放寻址法
开放寻址法的核心思想是,如果出现了散列冲突,我们就重新探测一个空闲位置,将其插入。那如何重新探测新的位置呢?我先讲一个比较简单的探测方法,线性探测。
当我们往散列表中插入数据时,如果某个数据经过散列函数散列之后,存储位置已经被占用了,我们就从当前位置开始,依次往后查找,看是否有空闲位置,直到找到为止。
这里面黄色的色块表示空闲位置,橙色的色块表示已经存储了数据。从图中可以看出,散列表的大小为 10,在元素 x 插入散列表之前,已经 6 个元素插入到散列表中。x 经过 Hash 算法之后,被散列到位置下标为 7 的位置,但是这个位置已经有数据了,所以就产生了冲突。于是我们就顺序地往后一个一个找,看有没有空闲的位置,遍历到尾部都没有找到空闲的位置,于是我们再从表头开始找,直到找到空闲位置 2,于是将其插入到这个位置。
在散列表中查找元素的过程有点儿类似插入过程。我们通过散列函数求出要查找元素的键值对应的散列值,然后比较数组中下标为散列值的元素和要查找的元素。
- 如果相等,则说明就是我们要找的元素;
- 否则就顺序往后依次查找。
- 如果遍历到数组中的空闲位置,还没有找到,就说明要查找的元素并没有在散列表中。
删除操作:
对于使用线性探测法解决冲突的散列表,删除操作稍微有些特别。我们不能单纯地把要删除的元素设置为空。
还记得我们刚讲的查找操作吗?在查找的时候,一旦我们通过线性探测方法,找到一个空闲位置,我们就可以认定散列表中不存在这个数据。但是,如果这个空闲位置是我们后来删除的,就会导致原来的查找算法失效。本来存在的数据,会被认定为不存在。这个问题如何解决呢?
我们可以将删除的元素,特殊标记为 deleted.当线性探测查找的时候,遇到标记为 deleted 的空间,并不是停下来,而是继续往下探测。
线性检测法的问题
当散列表中插入的数据越来越多时,散列冲突发生的可能性就会越来越大,空闲位置会越来越少,线性探测的时间就会越来越久。极端情况下,我们可能需要探测整个散列表,所以最坏情况下的时间复杂度为 O(n)。同理,在删除和查找时,也有可能会线性探测整张散列表,才能找到要查找或者删除的数据。
其他方法
对于开放寻址冲突解决方法,除了线性探测方法之外,还有另外两种比较经典的探测方法,二次探测(Quadratic probing)和双重散列(Double hashing)。
-
所谓二次探测,跟线性探测很像,线性探测每次探测的步长是 1,那它探测的下标序列就是 hash(key)+0,hash(key)+1,hash(key)+2……而二次探测探测的步长就变成了原来的“二次方”,也就是说,它探测的下标序列就是 hash(key)+0,hash(key)+12,hash(key)+22……
-
所谓双重散列,意思就是不仅要使用一个散列函数。我们使用一组散列函数 hash1(key),hash2(key),hash3(key)……我们先用第一个散列函数,如果计算得到的存储位置已经被占用,再用第二个散列函数,依次类推,直到找到空闲的存储位置。
2. 链表法
链表法是一种更加常用的散列冲突解决办法,相比开放寻址法,它要简单很多。我们来看这个图,在散列表中,每个“桶”或者“槽”会对应一条链表,所有散列值相同的元素我们都放到相同槽位对应的链表中。
当插入的时候,我们只需要通过散列函数计算出对应的散列槽位,将其插入到对应链表中即可,所以插入的时间复杂度是 O(1)。当查找、删除一个元素时,我们同样通过散列函数计算出对应的槽,然后遍历链表查找或者删除。
那查找或删除操作的时间复杂度是多少呢?
实际上,这两个操作的时间复杂度跟链表的长度 k 成正比,也就是 O(k)。对于散列比较均匀的散列函数来说,理论上讲,k=n/m,其中 n 表示散列中数据的个数,m 表示散列表中“槽”的个数。
散列表进阶
散列表的查询效率并不能笼统地说成是 O(1)。它跟散列函数、装载因子、散列冲突等都有关系。如果散列函数设计得不好,或者装载因子过高,都可能导致散列冲突发生的概率升高,查询效率下降。
如何设计散列函数
那什么才是好的散列函数呢?
- 首先,散列函数的设计不能太复杂。过于复杂的散列函数,势必会消耗很多计算时间,也就间接的影响到散列表的性能。
- 其次,散列函数生成的值要尽可能随机并且均匀分布,这样才能避免或者最小化散列冲突,而且即便出现冲突,散列到每个槽里的数据也会比较平均,不会出现某个槽内数据特别多的情况。
散列函数各式各样,我举几个常用的、简单的散列函数的设计方法,让你有个直观的感受。
第一个例子就是我们上一节的学生运动会的例子,我们通过分析参赛编号的特征,把编号中的后两位作为散列值。我们还可以用类似的散列函数处理手机号码,因为手机号码前几位重复的可能性很大,但是后面几位就比较随机,我们可以取手机号的后四位作为散列值。
第二个例子就是如何实现 Word 拼写检查功能。这里面的散列函数,我们就可以这样设计:将单词中每个字母的ASCll 码值“进位”相加,然后再跟散列表的大小求余、取模,作为散列值。比如,英文单词 nice,我们转化出来的散列值就是下面这样:
hash("nice")=(("n" - "a") * 26*26*26 + ("i" - "a")*26*26 + ("c" - "a")*26+ ("e"-"a")) / 78978
复制代码
装载因子过大了怎么办?
装载因子越大,说明散列表中的元素越多,空闲位置越少,散列冲突的概率就越大.不仅插入数据的过程要多次寻址或者拉很长的链,查找的过程也会因此变得很慢。
对于没有频繁插入和删除的静态数据集合来说,我们很容易根据数据的特点、分布等,设计出完美的、极少冲突的散列函数,因为毕竟之前数据都是已知的。
还记得我们前面多次讲的“动态扩容”吗?你可以回想一下,我们是如何做数组、栈、队列的动态扩容的。
针对散列表,当装载因子过大时,我们也可以进行动态扩容,重新申请一个更大的散列表,将数据搬移到这个新散列表中。假设每次扩容我们都申请一个原来散列表大小两倍的空间。如果原来散列表的装载因子是 0.8,那经过扩容之后,新散列表的装载因子就下降为原来的一半,变成了 0.4。
针对数组的扩容,数据搬移操作比较简单。但是,针对散列表的扩容,数据搬移操作要复杂很多。因为散列表的大小变了,数据的存储位置也变了,所以我们需要通过散列函数重新计算每个数据的存储位置。
看图里这个例子。在原来的散列表中,21 这个元素原来存储在下标为 0 的位置,搬移到新的散列表中,存储在下标为 7 的位置。
插入一个数据,最好情况下,不需要扩容,最好时间复杂度是 O(1)。最坏情况下,散列表装载因子过高,启动扩容,我们需要重新申请内存空间,重新计算哈希位置,并且搬移数据,所以最坏时间复杂度是 O(n)。用摊还分析法,均摊情况下,时间复杂度接近最好情况,就是 O(1)。
实际上,对于动态散列表,随着数据的删除,散列表中的数据会越来越少,空闲空间会越来越多。如果我们对空间消耗非常敏感,我们可以在装载因子小于某个值之后,启动动态缩容。当然,如果我们更加在意执行效率,能够容忍多消耗一点内存空间,那就可以不用费劲来缩容了。
我们前面讲到,当散列表的装载因子超过某个阈值时,就需要进行扩容。装载因子阈值需要选择得当。如果太大,会导致冲突过多;如果太小,会导致内存浪费严重。
装载因子阈值的设置要权衡时间、空间复杂度。如果内存空间不紧张,对执行效率要求很高,可以降低负载因子的阈值;相反,如果内存空间紧张,对执行效率要求又不高,可以增加负载因子的值,甚至可以大于 1。
如何避免低效地扩容?
我们刚刚分析得到,大部分情况下,动态扩容的散列表插入一个数据都很快,但是在特殊情况下,当装载因子已经到达阈值,需要先进行扩容,再插入数据。这个时候,插入数据就会变得很慢,甚至会无法接受。
我举一个极端的例子,如果散列表当前大小为 1GB,要想扩容为原来的两倍大小,那就需要对 1GB 的数据重新计算哈希值,并且从原来的散列表搬移到新的散列表,听起来就很耗时,是不是?
如果我们的业务代码直接服务于用户,尽管大部分情况下,插入一个数据的操作都很快,但是,极个别非常慢的插入操作,也会让用户崩溃。这个时候,“一次性”扩容的机制就不合适了。
为了解决一次性扩容耗时过多的情况,我们可以将扩容操作穿插在插入操作的过程中,分批完成。当装载因子触达阈值之后,我们只申请新空间,但并不将老的数据搬移到新散列表中。
当有新数据要插入时,我们将新数据插入新散列表中,并且从老的散列表中拿出一个数据放入到新散列表。每次插入一个数据到散列表,我们都重复上面的过程。经过多次插入操作之后,老的散列表中的数据就一点一点全部搬移到新散列表中了。这样没有了集中的一次性数据搬移,插入操作就都变得很快了。
这期间的查询操作怎么来做呢?对于查询操作,为了兼容了新、老散列表中的数据,我们先从新散列表中查找,如果没有找到,再去老的散列表中查找。
通过这样均摊的方法,将一次性扩容的代价,均摊到多次插入操作中,就避免了一次性扩容耗时过多的情况。这种实现方式,任何情况下,插入一个数据的时间复杂度都是 O(1)。
如何选择冲突解决方法?
Java 中 LinkedHashMap 就采用了链表法解决冲突,ThreadLocalMap 是通过线性探测的开放寻址法来解决冲突。这两种冲突解决方法各有什么优势和劣势,又各自适用哪些场景吗?
- 开放寻址法
优点 : 开放寻址法不像链表法,需要拉很多链表。散列表中的数据都存储在数组中,可以有效地利用 CPU 缓存加快查询速度。而且,这种方法实现的散列表,序列化起来比较简单。链表法包含指针,序列化起来就没那么容易。
缺点 : 上面我们讲到,用开放寻址法解决冲突的散列表,删除数据的时候比较麻烦,需要特殊标记已经删除掉的数据。而且,在开放寻址法中,所有的数据都存储在一个数组中,比起链表法来说,冲突的代价更高。所以,使用开放寻址法解决冲突的散列表,装载因子的上限不能太大。这也导致这种方法比链表法更浪费内存空间。
所以,我总结一下,当数据量比较小、装载因子小的时候,适合采用开放寻址法。这也是 Java 中的ThreadLocalMap使用开放寻址法解决散列冲突的原因。
- 链表法
首先,链表法对内存的利用率比开放寻址法要高。因为链表结点可以在需要的时候再创建,并不需要像开放寻址法那样事先申请好。实际上,这一点也是我们前面讲过的链表优于数组的地方。
链表法比起开放寻址法,对大装载因子的容忍度更高。开放寻址法只能适用装载因子小于 1 的情况。接近 1 时,就可能会有大量的散列冲突,导致大量的探测、再散列等,性能会下降很多。但是对于链表法来说,只要散列函数的值随机均匀,即便装载因子变成 10,也就是链表的长度变长了而已,虽然查找效率有所下降,但是比起顺序查找还是快很多。
链表因为要存储指针,所以对于比较小的对象的存储,是比较消耗内存的,还有可能会让内存的消耗翻倍。而且,因为链表中的结点是零散分布在内存中的,不是连续的,所以对 CPU 缓存是不友好的,这方面对于执行效率也有一定的影响。
当然,如果我们存储的是大对象,也就是说要存储的对象的大小远远大于一个指针的大小(4 个字节或者 8 个字节),那链表中指针的内存消耗在大对象面前就可以忽略了。
实际上,我们对链表法稍加改造,可以实现一个更加高效的散列表。那就是,我们将链表法中的链表改造为其他高效的动态数据结构,比如跳表、红黑树。这样,即便出现散列冲突,极端情况下,所有的数据都散列到同一个桶内,那最终退化成的散列表的查找时间也只不过是 O(logn)。
所以,我总结一下,基于链表的散列冲突处理方法比较适合存储大对象、大数据量的散列表,而且,比起开放寻址法,它更加灵活,支持更多的优化策略,比如用红黑树代替链表。
散列表举例分析
Java 中的 HashMap 这样一个工业级的散列表,
1. 初始大小
HashMap 默认的初始大小是 16,当然这个默认值是可以设置的,如果事先知道大概的数据量有多大,可以通过修改默认初始大小,减少动态扩容的次数,这样会大大提高 HashMap 的性能。
2. 装载因子和动态扩容
最大装载因子默认是 0.75,当 HashMap 中元素个数超过 0.75*capacity(capacity 表示散列表的容量)的时候,就会启动扩容,每次扩容都会扩容为原来的两倍大小。
3. 散列冲突解决方法
HashMap 底层采用链表法来解决冲突。即使负载因子和散列函数设计得再合理,也免不了会出现拉链过长的情况,一旦出现拉链过长,则会严重影响 HashMap 的性能。
于是,在 JDK1.8 版本中,为了对 HashMap 做进一步优化,我们引入了红黑树。而当链表长度太长(默认超过 8)时,链表就转换为红黑树。我们可以利用红黑树快速增删改查的特点,提高 HashMap 的性能。当红黑树结点个数少于 8 个的时候,又会将红黑树转化为链表。因为在数据量较小的情况下,红黑树要维护平衡,比起链表来,性能上的优势并不明显。
4. 散列函数
int hash(Object key) {
int h = key.hashCode();
return (h ^ (h >>> 16)) & (capitity -1); //capicity 表示散列表的大小
}
复制代码
其中,hashCode() 返回的是 Java 对象的 hash code。比如 String 类型的对象的 hashCode() 就是下面这样:
public int hashCode() {
int var1 = this.hash;
if(var1 == 0 && this.value.length > 0) {
char[] var2 = this.value;
for(int var3 = 0; var3 < this.value.length; ++var3) {
var1 = 31 * var1 + var2[var3];
}
this.hash = var1;
}
return var1;
}
复制代码