Disruptor源码解读

 

上一篇已经介绍了Disruptor是什么?简单总结了为什么这么快?下面我们直接源码搞起来,简单粗暴。
高性能队列disruptor为什么这么快?

 

一、核心类接口

Disruptor 提供了对RingBuffer的封装。

RingBuffer 环形队列,基于数组实现,内存被循环使用,减少了内存分配、回收扩容等操作。

EventProcessor 事件处理器,实现了Runnable,单线程批量处理BatchEventProcessor和多线程处理WorkProcessor。

Sequencer 生产者访问序列的接口,RingBuffer生产者的父接口,其直接实现有SingleProducerSequencer和MultiProducerSequencer。

EventSequencer 空接口,暂时没用,用于以后扩展。

SequenceBarrier 消费者屏障 消费者用于访问缓存的控制器。

WaitStrategy 当没有可消费的事件时,根据特定的实现进行等待。

SingleProducerSequencer 单生产者发布实现类

MultiProducerSequencer 多生产者发布实现类

笔者简单介绍下常用的类,看不懂没关系,等看完源码自然明白。

核心类源码分析已经上传了git地址:https://github.com/Sonion/disroptor

二、生产者

开局一张图,走起。

想分析disruptor,先看生产者,这是笔者整理的生产者相关类图。

Disruptor源码解读_第1张图片

单生产者发布流程:

生产者发布消息是从Disruptor的publish方法开始,

实际调用的RingBuffer的publishEvent,实际上也就是做两件事,一先去获取RingBuffer上的一个可用位置,第二步在可用位置上发布数据

来看看获取RingBuffer上的一个可用位置,先看看单生产者SingleProducerSequencer.next()方法。

 //SingleProducerSequencer.java   
    /**
     * @see Sequencer#next()
     */
    @Override
    public long next()
    {
        return next(1);
    }

    /**
     * @see Sequencer#next(int)
     */
    @Override
    public long next(int n)
    {
        if (n < 1 || n > bufferSize)
        {
            throw new IllegalArgumentException("n must be > 0 and < bufferSize");
        }
        // 获取上次申请最后的序列值
        long nextValue = this.nextValue;
        // n=1,得到本次需要申请的序列值
        long nextSequence = nextValue + n;
        // 可能发生绕环的点,本次申请值 - 环形一圈长度
        long wrapPoint = nextSequence - bufferSize;
        // 数值最小的序列值,理解为最慢消费者
        long cachedGatingSequence = this.cachedValue;
        // 序列值初始值是 -1 ,只有wrapPoint 大于 cachedGatingSequence 将发生绕环行为,生产者超一圈从后方追上消费者,生产者覆盖未消费的情况。
        // 没有空坑位,将进入循环等待。
        if (wrapPoint > cachedGatingSequence || cachedGatingSequence > nextValue)
        {
            cursor.setVolatile(nextValue);  // StoreLoad fence

            long minSequence;
            // 只有当消费者消费,向前移动后,才能跳出循环
            // 每次重新获取消费者序列最小值进行轮询判断
            while (wrapPoint > (minSequence = Util.getMinimumSequence(gatingSequences, nextValue)))
            {
                LockSupport.parkNanos(1L);
            }
            // 当消费者消费后,更新缓存的最小序号
            this.cachedValue = minSequence;
        }
        // 将成功申请的序号赋值给对象实例变量
        this.nextValue = nextSequence;

        return nextSequence;
    }

next获取可以写入的序列号,回到RingBuffer的publishEvent方法,执行translateAndPublish方法,进行发布操作。

//RingBuffer.java   
     private void translateAndPublish(EventTranslator translator, long sequence)
    {
        try
        {
            translator.translateTo(get(sequence), sequence);
        }
        finally
        {
            sequencer.publish(sequence);
        }
    }

 translator.translateTo()对EventTranslator接口的实现。将数据放置好,进行发布。

//SingleProducerSequencer.java  
  /**
     * @see Sequencer#publish(long)
     */
    @Override
    public void publish(long sequence)
    {
        // 更新Sequencer内部游标值
        cursor.set(sequence);
        // 当生产者发布新事件后,将通知等待的EventProcessor,可以进行消费
        waitStrategy.signalAllWhenBlocking();
    }

// BlockingWaitStrategy.java
    @Override
    public void signalAllWhenBlocking()
    {
        synchronized (mutex)
        {
            mutex.notifyAll();
        }
    }

到此单生产者发布流程已经讲完。还是那句话,很简单,两步操作先去获取RingBuffer上的一个可用位置,第二步在可用位置上发布数据。

多生产者发布流程:

我们简单看下,前面和单生产者发布流程一样,实现接口AbstractSequencer,还是next()方法,我们来看。

//MultiProducerSequencer.java
    /**
     * @see Sequencer#next()
     */
    @Override
    public long next()
    {
        return next(1);
    }

    /**
     * @see Sequencer#next(int)
     */
    @Override
    public long next(int n)
    {
        if (n < 1 || n > bufferSize)
        {
            throw new IllegalArgumentException("n must be > 0 and < bufferSize");
        }

        long current;
        long next;

        do
        {
            // 当前游标值,初始化时是-1
            current = cursor.get();
            next = current + n;

            long wrapPoint = next - bufferSize;
            long cachedGatingSequence = gatingSequenceCache.get();

            if (wrapPoint > cachedGatingSequence || cachedGatingSequence > current)
            {
                long gatingSequence = Util.getMinimumSequence(gatingSequences, current);

                if (wrapPoint > gatingSequence)
                {
                    LockSupport.parkNanos(1); // TODO, should we spin based on the wait strategy?
                    continue;
                }

                gatingSequenceCache.set(gatingSequence);
            }
            else if (cursor.compareAndSet(current, next))
            {
                break;
            }
        }
        while (true);

        return next;
    }

可以看到多生产者发布流程和单生产者发布流程区别不大,最后当然还是调用publish发布,publish有点区别,我们来看。

    /**
     * @see Sequencer#publish(long)
     */
    @Override
    public void publish(final long sequence)
    {
        //多生产者是采用availableBuffer数组设置
        setAvailable(sequence);

        waitStrategy.signalAllWhenBlocking();
    }

    /**
     * @see Sequencer#publish(long, long)
     */
    @Override
    public void publish(long lo, long hi)
    {
        for (long l = lo; l <= hi; l++)
        {
            setAvailable(l);
        }
        waitStrategy.signalAllWhenBlocking();
    }

对比SingleProducerSequencer的publish,MultiProducerSequencer的publish没有设置cursor,而是将内部使用的availableBuffer数组对应位置进行设置。availableBuffer是一个记录RingBuffer槽位状态的数组,通过对序列值sequence&bufferSize-1,获得槽位号,再通过位运算,获取序列值所在的圈数,进行设置。使用更高效的位与和右移操作。

    private void setAvailable(final long sequence)
    {
        // calculateIndex 与&, calculateAvailabilityFlag 移位操作
        setAvailableBufferValue(calculateIndex(sequence), calculateAvailabilityFlag(sequence));
    }

    private void setAvailableBufferValue(int index, int flag)
    {
        // 使用Unsafe更新属性,因为是直接操作内存,所以需要计算元素位置对应的内存位置buffer地址
        long bufferAddress = (index * SCALE) + BASE;
        // availableBuffer是标志可用位置的int数组,初始全为-1
        UNSAFE.putOrderedInt(availableBuffer, bufferAddress, flag);
    }

     private int calculateAvailabilityFlag(final long sequence)
    {
        return (int) (sequence >>> indexShift);
    }

    private int calculateIndex(final long sequence)
    {
        return ((int) sequence) & indexMask;
    }

到此,多生产者发布流程也讲完了,是不是很easy,如果大家有问题,评论区我们一起讨论。

三、消费者

老规矩,再来一张图,这个就比较简单了。

Disruptor源码解读_第2张图片

EventProcessor是整个消费者事件处理框架,EventProcessor接口继承了Runnable接口,主要有两种实现:单线程批量处理BatchEventProcessor和多线程处理WorkProcessor
在使用Disruptor帮助类构建消费者时,使用handleEventsWith方法传入多个EventHandler,内部使用多个BatchEventProcessor关联多个线程执行。这种情况类似JMS中的发布订阅模式,同一事件会被多个消费者并行消费。适用于同一事件触发多种操作。
而使用Disruptor的handleEventsWithWorkerPool传入多个WorkHandler时,内部使用多个WorkProcessor关联多个线程执行。这种情况类似JMS的点对点模式,同一事件会被一组消费者其中之一消费。适用于提升消费者并行处理能力。

BatchEventProcessor单线程批处理事件(理解为广播消费,重复消费)

// EventHandlerGroup.java
public EventHandlerGroup then(final EventHandlersuper T>... handlers)
{
    return handleEventsWith(handlers);
}
public EventHandlerGroup handleEventsWith(final EventHandlersuper T>... handlers)
{
    return disruptor.createEventProcessors(sequences, handlers);
}

 

//Disruptor.java
    // barrierSequences是EventHandlerGroup实例的序列,就是上一个事件处理者组的序列
    EventHandlerGroup createEventProcessors(
        final Sequence[] barrierSequences,
        final EventHandlersuper T>[] eventHandlers)
    {
        checkNotStarted();
        // processorSequences本次事件处理器组的序列组
        final Sequence[] processorSequences = new Sequence[eventHandlers.length];
        final SequenceBarrier barrier = ringBuffer.newBarrier(barrierSequences);

        for (int i = 0, eventHandlersLength = eventHandlers.length; i < eventHandlersLength; i++)
        {
            final EventHandlersuper T> eventHandler = eventHandlers[i];

            final BatchEventProcessor batchEventProcessor =
                new BatchEventProcessor<>(ringBuffer, barrier, eventHandler);

            if (exceptionHandler != null)
            {
                batchEventProcessor.setExceptionHandler(exceptionHandler);
            }

            consumerRepository.add(batchEventProcessor, eventHandler, barrier);
            processorSequences[i] = batchEventProcessor.getSequence();
        }
        // 每次添加完事件处理器后,更新门控序列,用于后续调用链的添加判断。
        updateGatingSequencesForNextInChain(barrierSequences, processorSequences);

        return new EventHandlerGroup<>(this, consumerRepository, processorSequences);
    }

    // 门控,是指后续消费链的消费,不能超过前边。
    private void updateGatingSequencesForNextInChain(final Sequence[] barrierSequences, final Sequence[] processorSequences)
    {
        if (processorSequences.length > 0)
        {
            //GatingSequences一直保存消费链末端消费者的序列组
            ringBuffer.addGatingSequences(processorSequences);
            for (final Sequence barrierSequence : barrierSequences)
            {
                ringBuffer.removeGatingSequence(barrierSequence);
            }
            // 取消标记上一组消费者为消费链末端
            consumerRepository.unMarkEventProcessorsAsEndOfChain(barrierSequences);
        }
    }

 

BatchEventProcessor构建消费者链时的逻辑都在createEventProcessors这个方法中。

先简单说下ConsumerRepository,这个类主要保存消费者的各种关系,如通过EventHandler引用获取EventProcessorInfo信息,通过Sequence获取ConsumerInfo信息等。

因为要使用引用做key,所以数据结构使用IdentityHashMap

  • IdentityHashMap使用的是==比较key的值,而HashMap使用的是equals()
  • HashMap使用的是hashCode()查找位置,IdentityHashMap使用的是System.identityHashCode(object)
  • IdentityHashMap理论上来说速度要比HashMap快一点
  • 另外一点呢就是IdentityHashMap中key能重复,但需要注意一点的是key比较的方法是==,所以若要存放两个相同的key,就需要存放不同的地址。

这个createEventProcessors方法接收两个参数,barrierSequences表示当前消费者组的屏障序列数组,如果当前消费者组是第一组,则取一个空的序列数组;否则,barrierSequences就是上一组消费者组的序列数组。createEventProcessors方法的另一个参数eventHandlers,这个参数是代表事件消费逻辑的EventHandler数组。
Disruptor为每个EventHandler实现类都创建了一个对应的BatchEventProcessor,所有消费者共用一个SequenceBarrier
在构建BatchEventProcessor时需要以下传入三个构造参数:dataProvider是数据存储结构如RingBuffer;sequenceBarrier用于跟踪生产者游标,协调数据处理;eventHandler是用户实现的事件处理器,也就是实际的消费者。

//BatchEventProcessor.java
    @Override
    public void run()
    {
        if (running.compareAndSet(IDLE, RUNNING))
        {
            sequenceBarrier.clearAlert();

            notifyStart();
            try
            {
                if (running.get() == RUNNING)
                {
                    processEvents();
                }
            }
            finally
            {
                notifyShutdown();
                running.set(IDLE);
            }
        }
        else
        {
            // This is a little bit of guess work.  The running state could of changed to HALTED by
            // this point.  However, Java does not have compareAndExchange which is the only way
            // to get it exactly correct.
            if (running.get() == RUNNING)
            {
                throw new IllegalStateException("Thread is already running");
            }
            else
            {
                earlyExit();
            }
        }
    }

    private void processEvents()
    {
        T event = null;
        long nextSequence = sequence.get() + 1L;

        while (true)
        {
            try
            {
                // 当前能够使用的最大值
                // 使用给定的等待策略去等待下一个序列可用
                final long availableSequence = sequenceBarrier.waitFor(nextSequence);
                if (batchStartAware != null)
                {
                    batchStartAware.onBatchStart(availableSequence - nextSequence + 1);
                }

                // 批处理
                // 消费的偏移量大于上次消费记录
                while (nextSequence <= availableSequence)
                {
                    event = dataProvider.get(nextSequence);
                    eventHandler.onEvent(event, nextSequence, nextSequence == availableSequence);
                    nextSequence++;
                }

                // eventHandler处理完毕后,更新当前序号
                sequence.set(availableSequence);
            }
            catch (final TimeoutException e)
            {
                notifyTimeout(sequence.get());
            }
            catch (final AlertException ex)
            {
                if (running.get() != RUNNING)
                {
                    break;
                }
            }
            catch (final Throwable ex)
            {
                exceptionHandler.handleEventException(ex, nextSequence, event);
                sequence.set(nextSequence);
                nextSequence++;
            }
        }
    }

我们再来看看SequenceBarrier实现类ProcessingSequenceBarrier的代码是如何实现waitFor方法。

final class ProcessingSequenceBarrier implements SequenceBarrier
{
    /**
     * 等待可用消费时,指定的等待策略
     */
    private final WaitStrategy waitStrategy;
    /**
     * 依赖的上组消费者的序号,如果当前为第一组则为cursorSequence(即生产者发布游标序列)
     * 否则使用FixedSequenceGroup封装上组消费者序列
     */
    private final Sequence dependentSequence;
    /**
     * 当触发halt时,将标记alerted为true
     */
    private volatile boolean alerted = false;
    /**
     * AbstractSequencer中的cursor引用,记录当前发布者发布的最新位置
     */
    private final Sequence cursorSequence;
    /**
     * MultiProducerSequencer 或 SingleProducerSequencer
     */
    private final Sequencer sequencer;

    ProcessingSequenceBarrier(
        final Sequencer sequencer,
        final WaitStrategy waitStrategy,
        final Sequence cursorSequence,
        final Sequence[] dependentSequences)
    {
        this.sequencer = sequencer;
        this.waitStrategy = waitStrategy;
        this.cursorSequence = cursorSequence;
        // 依赖的上一组序列长度,第一次是0
        if (0 == dependentSequences.length)
        {
            dependentSequence = cursorSequence;
        }
        // 将上一组序列数组复制成新数组保存,引用不变
        else
        {
            dependentSequence = new FixedSequenceGroup(dependentSequences);
        }
    }

    @Override
    public long waitFor(final long sequence)
        throws AlertException, InterruptedException, TimeoutException
    {
        // 检查是否停止服务
        checkAlert();
        // 获取最大可用序号 sequence为给定序号,一般为当前序号+1,cursorSequence记录生产者最新位置,
        long availableSequence = waitStrategy.waitFor(sequence, cursorSequence, dependentSequence, this);

        if (availableSequence < sequence)
        {
            return availableSequence;
        }
        // 返回已发布最高的序列值,将对每个序号进行校验
        return sequencer.getHighestPublishedSequence(sequence, availableSequence);
    }

我们再来看看等待策略WaitStrategy#waitFor

//BlockingWaitStrategy.java
public final class BlockingWaitStrategy implements WaitStrategy
{
    private final Object mutex = new Object();

    @Override
    public long waitFor(long sequence, Sequence cursorSequence, Sequence dependentSequence, SequenceBarrier barrier)
        throws AlertException, InterruptedException
    {
        long availableSequence;
        // 当前游标小于给定序号,也就是无可用事件
        if (cursorSequence.get() < sequence)
        {
            //也就是只有等待策略才会用锁,其他使用CAS,这就是前文提到的高效原因
            synchronized (mutex)
            {
                // 当给定的序号大于生产者游标序号时,进行等待
                while (cursorSequence.get() < sequence)
                // 循环等待,在Sequencer中publish进行唤醒;等待消费时也会在循环中定时唤醒。
                {
                    barrier.checkAlert();
                    mutex.wait();
                }
            }
        }
        while ((availableSequence = dependentSequence.get()) < sequence)
        {
            barrier.checkAlert();
            ThreadHints.onSpinWait();
        }

        return availableSequence;
    }

WorkProcessor多线程处理事件(理解为集群消费)

WorkProcessor的原理和BatchEventProcessor类似,只是多了workSequence用来保存同组共用的处理序列。在更新workSequence时,涉及多线程操作,所以使用CAS进行更新。 

//WorkProcessor.java
    @Override
    public void run()
    {
        if (!running.compareAndSet(false, true))
        {
            throw new IllegalStateException("Thread is already running");
        }
        sequenceBarrier.clearAlert();

        notifyStart();

        boolean processedSequence = true;
        long cachedAvailableSequence = Long.MIN_VALUE;
        long nextSequence = sequence.get();
        T event = null;
        while (true)
        {
            try
            {
                // if previous sequence was processed - fetch the next sequence and set
                // that we have successfully processed the previous sequence
                // typically, this will be true
                // this prevents the sequence getting too far forward if an exception
                // is thrown from the WorkHandler
                // 表示nextSequence序号的处理情况(不区分正常或是异常处理)。只有处理过,才能申请下一个序号。
                if (processedSequence)
                {
                    processedSequence = false;
                    do
                    {
                        // 同组中多个消费线程有可能会争抢一个序号,使用CAS避免使用锁。
                        // 同一组使用一个workSequence,WorkProcessor不断申请下一个可用序号,对workSequence设置成功才会实际消费。
                        nextSequence = workSequence.get() + 1L;
                        sequence.set(nextSequence - 1L);
                    }
                    while (!workSequence.compareAndSet(nextSequence - 1L, nextSequence));
                }
                // 缓存的可用序号比要处理的序号大,才能进行处理
                if (cachedAvailableSequence >= nextSequence)
                {
                    event = ringBuffer.get(nextSequence);
                    workHandler.onEvent(event);
                    processedSequence = true;
                }
                // 更新缓存的可用序列。这个cachedAvailableSequence只用在WorkProcessor实例内,不同实例的缓存可能是不一样
                else
                {
                    // 和单线程模式类似,返回的也是最大可用序号
                    cachedAvailableSequence = sequenceBarrier.waitFor(nextSequence);
                }
            }
            catch (final TimeoutException e)
            {
                notifyTimeout(sequence.get());
            }
            catch (final AlertException ex)
            {
                if (!running.get())
                {
                    break;
                }
            }
            catch (final Throwable ex)
            {
                // handle, mark as processed, unless the exception handler threw an exception
                exceptionHandler.handleEventException(ex, nextSequence, event);
                processedSequence = true;
            }
        }

        notifyShutdown();

        running.set(false);
    }

总结一波:

BatchEventProcessor主要用于处理单线程并行任务,同一消费者组的不同消费者会接收相同的事件,并在所有事件处理完毕后进入下一消费者组进行处理(是不是类似JUC里的Phaser、CyclicBarrier或CountDownLatch呢)。WorkProcessor通过WorkerPool管理多个WorkProcessor,达到多线程处理事件的目的,同一消费者组的多个WorkProcessor不会处理同一个事件。通过选择不同的WaitStragegy实现,可以控制消费者在没有可用事件处理时的等待策略。

应用场景总结

BatchEventProcessor

  • 对Event的处理顺序有需求
  • 单个Event的处理非常快(因为单线程)

WorkProcessor

  • 对Event的处理顺序没有要求,虽然是顺序的消费,但是最终的消费先后取决于线程的调度,没有办法保证
  • 单个Event的处理速度相对较慢(因为多线程)

具体的核心类分析,可以参考 https://github.com/Sonion/disroptor  里面有分析和注释,写个demo,打个断点,再看看核心类和方法,Disruptor 源码还是简单的,主要是环形队列,循环写入,不用GC回收,还有一些缓存行优化,无锁等处理是值得学习和思考的。

参考资料:

1、参考demo可以看这里

https://www.cnblogs.com/xiangnanl/p/9955714.html#4114850

2、简单资料

https://blog.csdn.net/changong28/article/details/43637679

http://brokendreams.iteye.com/category/349033

转载于:https://www.cnblogs.com/lewis09/p/9974617.html

你可能感兴趣的:(java,git,数据结构与算法)