Coursera 吴恩达DeepLearning.AI 第五课 sequence model 序列模型 第一周Building your Recurrent Neural Network - Ste

本周的习题有点多,主要是python不熟悉,然后时间不够,提醒说马上过期才开始看的视频,optional部分没有写完

Building your Recurrent Neural Network - Step by Step

Welcome to Course 5's first assignment! In this assignment, you will implement your first Recurrent Neural Network in numpy.

Recurrent Neural Networks (RNN) are very effective for Natural Language Processing and other sequence tasks because they have "memory". They can read inputs xtx⟨t⟩ (such as words) one at a time, and remember some information/context through the hidden layer activations that get passed from one time-step to the next. This allows a uni-directional RNN to take information from the past to process later inputs. A bidirection RNN can take context from both the past and the future.

Notation:

  • Superscript [l][l] denotes an object associated with the lthlth layer.

    • Example: a[4]a[4] is the 4th4th layer activation. W[5]W[5] and b[5]b[5] are the 5th5th layer parameters.
  • Superscript (i)(i) denotes an object associated with the ithith example.

    • Example: x(i)x(i) is the ithith training example input.
  • Superscript t⟨t⟩ denotes an object at the tthtth time-step.

    • Example: xtx⟨t⟩ is the input x at the tthtth time-step. x(i)tx(i)⟨t⟩ is the input at the tthtth timestep of example ii.
  • Lowerscript ii denotes the ithith entry of a vector.

    • Example: a[l]iai[l] denotes the ithith entry of the activations in layer ll.

We assume that you are already familiar with numpy and/or have completed the previous courses of the specialization. Let's get started!

Let's first import all the packages that you will need during this assignment.

In [ ]:
import numpy as np
from rnn_utils import *

1 - Forward propagation for the basic Recurrent Neural Network

Later this week, you will generate music using an RNN. The basic RNN that you will implement has the structure below. In this example, Tx=TyTx=Ty.

Figure 1: Basic RNN model

Here's how you can implement an RNN:

Steps:

  1. Implement the calculations needed for one time-step of the RNN.
  2. Implement a loop over TxTx time-steps in order to process all the inputs, one at a time.

Let's go!

1.1 - RNN cell

A Recurrent neural network can be seen as the repetition of a single cell. You are first going to implement the computations for a single time-step. The following figure describes the operations for a single time-step of an RNN cell.

Figure 2: Basic RNN cell. Takes as input  xtx⟨t⟩ (current input) and  at1a⟨t−1⟩ (previous hidden state containing information from the past), and outputs  ata⟨t⟩ which is given to the next RNN cell and also used to predict  yty⟨t⟩

Exercise: Implement the RNN-cell described in Figure (2).

Instructions:

  1. Compute the hidden state with tanh activation: at=tanh(Waaat1+Waxxt+ba)a⟨t⟩=tanh⁡(Waaa⟨t−1⟩+Waxx⟨t⟩+ba).
  2. Using your new hidden state ata⟨t⟩, compute the prediction ŷ t=softmax(Wyaat+by)y^⟨t⟩=softmax(Wyaa⟨t⟩+by). We provided you a function: softmax.
  3. Store (at,at1,xt,parameters)(a⟨t⟩,a⟨t−1⟩,x⟨t⟩,parameters) in cache
  4. Return ata⟨t⟩ , yty⟨t⟩ and cache

We will vectorize over mm examples. Thus, xtx⟨t⟩ will have dimension (nx,m)(nx,m), and ata⟨t⟩ will have dimension (na,m)(na,m).

In [ ]:
# GRADED FUNCTION: rnn_cell_forward
def rnn_cell_forward(xt, a_prev, parameters):
    """
    Implements a single forward step of the RNN-cell as described in Figure (2)
    Arguments:
    xt -- your input data at timestep "t", numpy array of shape (n_x, m).
    a_prev -- Hidden state at timestep "t-1", numpy array of shape (n_a, m)
    parameters -- python dictionary containing:
                        Wax -- Weight matrix multiplying the input, numpy array of shape (n_a, n_x)
                        Waa -- Weight matrix multiplying the hidden state, numpy array of shape (n_a, n_a)
                        Wya -- Weight matrix relating the hidden-state to the output, numpy array of shape (n_y, n_a)
                        ba --  Bias, numpy array of shape (n_a, 1)
                        by -- Bias relating the hidden-state to the output, numpy array of shape (n_y, 1)
    Returns:
    a_next -- next hidden state, of shape (n_a, m)
    yt_pred -- prediction at timestep "t", numpy array of shape (n_y, m)
    cache -- tuple of values needed for the backward pass, contains (a_next, a_prev, xt, parameters)
    """
    
    # Retrieve parameters from "parameters"
    Wax = parameters["Wax"]
    Waa = parameters["Waa"]
    Wya = parameters["Wya"]
    ba = parameters["ba"]
    by = parameters["by"]
    
    ### START CODE HERE ### (≈2 lines)
    # compute next activation state using the formula given above
    a_next = None
    # compute output of the current cell using the formula given above
    yt_pred = None   
    ### END CODE HERE ###
    
    # store values you need for backward propagation in cache
    cache = (a_next, a_prev, xt, parameters)
    
    return a_next, yt_pred, cache
In [ ]:
np.random.seed(1)
xt = np.random.randn(3,10)
a_prev = np.random.randn(5,10)
Waa = np.random.randn(5,5)
Wax = np.random.randn(5,3)
Wya = np.random.randn(2,5)
ba = np.random.randn(5,1)
by = np.random.randn(2,1)
parameters = {"Waa": Waa, "Wax": Wax, "Wya": Wya, "ba": ba, "by": by}
a_next, yt_pred, cache = rnn_cell_forward(xt, a_prev, parameters)
print("a_next[4] = ", a_next[4])
print("a_next.shape = ", a_next.shape)
print("yt_pred[1] =", yt_pred[1])
print("yt_pred.shape = ", yt_pred.shape)

Expected Output:

a_next[4]: [ 0.59584544 0.18141802 0.61311866 0.99808218 0.85016201 0.99980978 -0.18887155 0.99815551 0.6531151 0.82872037]
a_next.shape: (5, 10)
yt[1]: [ 0.9888161 0.01682021 0.21140899 0.36817467 0.98988387 0.88945212 0.36920224 0.9966312 0.9982559 0.17746526]
yt.shape: (2, 10)

1.2 - RNN forward pass

You can see an RNN as the repetition of the cell you've just built. If your input sequence of data is carried over 10 time steps, then you will copy the RNN cell 10 times. Each cell takes as input the hidden state from the previous cell (at1a⟨t−1⟩) and the current time-step's input data (xtx⟨t⟩). It outputs a hidden state (ata⟨t⟩) and a prediction (yty⟨t⟩) for this time-step.

Figure 3: Basic RNN. The input sequence  x=(x1,x2,...,xTx)x=(x⟨1⟩,x⟨2⟩,...,x⟨Tx⟩) is carried over  TxTx time steps. The network outputs  y=(y1,y2,...,yTx)y=(y⟨1⟩,y⟨2⟩,...,y⟨Tx⟩).

Exercise: Code the forward propagation of the RNN described in Figure (3).

Instructions:

  1. Create a vector of zeros (aa) that will store all the hidden states computed by the RNN.
  2. Initialize the "next" hidden state as a0a0 (initial hidden state).
  3. Start looping over each time step, your incremental index is tt :
    • Update the "next" hidden state and the cache by running rnn_cell_forward
    • Store the "next" hidden state in aa (tthtth position)
    • Store the prediction in y
    • Add the cache to the list of caches
  4. Return aayy and caches
In [ ]:
# GRADED FUNCTION: rnn_forward
def rnn_forward(x, a0, parameters):
    """
    Implement the forward propagation of the recurrent neural network described in Figure (3).
    Arguments:
    x -- Input data for every time-step, of shape (n_x, m, T_x).
    a0 -- Initial hidden state, of shape (n_a, m)
    parameters -- python dictionary containing:
                        Waa -- Weight matrix multiplying the hidden state, numpy array of shape (n_a, n_a)
                        Wax -- Weight matrix multiplying the input, numpy array of shape (n_a, n_x)
                        Wya -- Weight matrix relating the hidden-state to the output, numpy array of shape (n_y, n_a)
                        ba --  Bias numpy array of shape (n_a, 1)
                        by -- Bias relating the hidden-state to the output, numpy array of shape (n_y, 1)
    Returns:
    a -- Hidden states for every time-step, numpy array of shape (n_a, m, T_x)
    y_pred -- Predictions for every time-step, numpy array of shape (n_y, m, T_x)
    caches -- tuple of values needed for the backward pass, contains (list of caches, x)
    """
    
    # Initialize "caches" which will contain the list of all caches
    caches = []
    
    # Retrieve dimensions from shapes of x and parameters["Wya"]
    n_x, m, T_x = x.shape
    n_y, n_a = parameters["Wya"].shape
    
    ### START CODE HERE ###
    
    # initialize "a" and "y" with zeros (≈2 lines)
    a = None
    y_pred = None
    
    # Initialize a_next (≈1 line)
    a_next = None
    
    # loop over all time-steps
    for t in range(None):
        # Update next hidden state, compute the prediction, get the cache (≈1 line)
        a_next, yt_pred, cache = None
        # Save the value of the new "next" hidden state in a (≈1 line)
        a[:,:,t] = None
        # Save the value of the prediction in y (≈1 line)
        y_pred[:,:,t] = None
        # Append "cache" to "caches" (≈1 line)
        None
        
    ### END CODE HERE ###
    
    # store values needed for backward propagation in cache
    caches = (caches, x)
    
    return a, y_pred, caches
In [ ]:
np.random.seed(1)
x = np.random.randn(3,10,4)
a0 = np.random.randn(5,10)
Waa = np.random.randn(5,5)
Wax = np.random.randn(5,3)
Wya = np.random.randn(2,5)
ba = np.random.randn(5,1)
by = np.random.randn(2,1)
parameters = {"Waa": Waa, "Wax": Wax, "Wya": Wya, "ba": ba, "by": by}
a, y_pred, caches = rnn_forward(x, a0, parameters)
print("a[4][1] = ", a[4][1])
print("a.shape = ", a.shape)
print("y_pred[1][3] =", y_pred[1][3])
print("y_pred.shape = ", y_pred.shape)
print("caches[1][1][3] =", caches[1][1][3])
print("len(caches) = ", len(caches))

Expected Output:

a[4][1]: [-0.99999375 0.77911235 -0.99861469 -0.99833267]
a.shape: (5, 10, 4)
y[1][3]: [ 0.79560373 0.86224861 0.11118257 0.81515947]
y.shape: (2, 10, 4)
cache[1][1][3]: [-1.1425182 -0.34934272 -0.20889423 0.58662319]
len(cache): 2

Congratulations! You've successfully built the forward propagation of a recurrent neural network from scratch. This will work well enough for some applications, but it suffers from vanishing gradient problems. So it works best when each output yty⟨t⟩ can be estimated using mainly "local" context (meaning information from inputs xtx⟨t′⟩ where tt′ is not too far from tt).

In the next part, you will build a more complex LSTM model, which is better at addressing vanishing gradients. The LSTM will be better able to remember a piece of information and keep it saved for many timesteps.

2 - Long Short-Term Memory (LSTM) network

This following figure shows the operations of an LSTM-cell.

Figure 4: LSTM-cell. This tracks and updates a "cell state" or memory variable  ctc⟨t⟩ at every time-step, which can be different from  ata⟨t⟩.

Similar to the RNN example above, you will start by implementing the LSTM cell for a single time-step. Then you can iteratively call it from inside a for-loop to have it process an input with TxTx time-steps.

About the gates

- Forget gate

For the sake of this illustration, lets assume we are reading words in a piece of text, and want use an LSTM to keep track of grammatical structures, such as whether the subject is singular or plural. If the subject changes from a singular word to a plural word, we need to find a way to get rid of our previously stored memory value of the singular/plural state. In an LSTM, the forget gate lets us do this:

Γtf=σ(Wf[at1,xt]+bf)(1)(1)Γf⟨t⟩=σ(Wf[a⟨t−1⟩,x⟨t⟩]+bf)

Here, WfWf are weights that govern the forget gate's behavior. We concatenate [at1,xt][a⟨t−1⟩,x⟨t⟩] and multiply by WfWf. The equation above results in a vector ΓtfΓf⟨t⟩ with values between 0 and 1. This forget gate vector will be multiplied element-wise by the previous cell state ct1c⟨t−1⟩. So if one of the values of ΓtfΓf⟨t⟩ is 0 (or close to 0) then it means that the LSTM should remove that piece of information (e.g. the singular subject) in the corresponding component of ct1c⟨t−1⟩. If one of the values is 1, then it will keep the information.

- Update gate

Once we forget that the subject being discussed is singular, we need to find a way to update it to reflect that the new subject is now plural. Here is the formulat for the update gate:

Γtu=σ(Wu[at1,x{t}]+bu)(2)(2)Γu⟨t⟩=σ(Wu[a⟨t−1⟩,x{t}]+bu)

Similar to the forget gate, here ΓtuΓu⟨t⟩ is again a vector of values between 0 and 1. This will be multiplied element-wise with c̃ tc~⟨t⟩, in order to compute ctc⟨t⟩.

- Updating the cell

To update the new subject we need to create a new vector of numbers that we can add to our previous cell state. The equation we use is:

c̃ t=tanh(Wc[at1,xt]+bc)(3)(3)c~⟨t⟩=tanh⁡(Wc[a⟨t−1⟩,x⟨t⟩]+bc)

Finally, the new cell state is:

ct=Γtfct1+Γtuc̃ t(4)(4)c⟨t⟩=Γf⟨t⟩∗c⟨t−1⟩+Γu⟨t⟩∗c~⟨t⟩

- Output gate

To decide which outputs we will use, we will use the following two formulas:

Γto=σ(Wo[at1,xt]+bo)(5)(5)Γo⟨t⟩=σ(Wo[a⟨t−1⟩,x⟨t⟩]+bo)
at=Γtotanh(ct)(6)(6)a⟨t⟩=Γo⟨t⟩∗tanh⁡(c⟨t⟩)

Where in equation 5 you decide what to output using a sigmoid function and in equation 6 you multiply that by the tanhtanh of the previous state.

2.1 - LSTM cell

Exercise: Implement the LSTM cell described in the Figure (3).

Instructions:

  1. Concatenate at1a⟨t−1⟩ and xtx⟨t⟩ in a single matrix: concat=[at1xt]concat=[a⟨t−1⟩x⟨t⟩]
  2. Compute all the formulas 1-6. You can use sigmoid() (provided) and np.tanh().
  3. Compute the prediction yty⟨t⟩. You can use softmax() (provided).
In [ ]:
# GRADED FUNCTION: lstm_cell_forward
def lstm_cell_forward(xt, a_prev, c_prev, parameters):
    """
    Implement a single forward step of the LSTM-cell as described in Figure (4)
    Arguments:
    xt -- your input data at timestep "t", numpy array of shape (n_x, m).
    a_prev -- Hidden state at timestep "t-1", numpy array of shape (n_a, m)
    c_prev -- Memory state at timestep "t-1", numpy array of shape (n_a, m)
    parameters -- python dictionary containing:
                        Wf -- Weight matrix of the forget gate, numpy array of shape (n_a, n_a + n_x)
                        bf -- Bias of the forget gate, numpy array of shape (n_a, 1)
                        Wi -- Weight matrix of the update gate, numpy array of shape (n_a, n_a + n_x)
                        bi -- Bias of the update gate, numpy array of shape (n_a, 1)
                        Wc -- Weight matrix of the first "tanh", numpy array of shape (n_a, n_a + n_x)
                        bc --  Bias of the first "tanh", numpy array of shape (n_a, 1)
                        Wo -- Weight matrix of the output gate, numpy array of shape (n_a, n_a + n_x)
                        bo --  Bias of the output gate, numpy array of shape (n_a, 1)
                        Wy -- Weight matrix relating the hidden-state to the output, numpy array of shape (n_y, n_a)
                        by -- Bias relating the hidden-state to the output, numpy array of shape (n_y, 1)
                        
    Returns:
    a_next -- next hidden state, of shape (n_a, m)
    c_next -- next memory state, of shape (n_a, m)
    yt_pred -- prediction at timestep "t", numpy array of shape (n_y, m)
    cache -- tuple of values needed for the backward pass, contains (a_next, c_next, a_prev, c_prev, xt, parameters)
    
    Note: ft/it/ot stand for the forget/update/output gates, cct stands for the candidate value (c tilde),
          c stands for the memory value
    """
    # Retrieve parameters from "parameters"
    Wf = parameters["Wf"]
    bf = parameters["bf"]
    Wi = parameters["Wi"]
    bi = parameters["bi"]
    Wc = parameters["Wc"]
    bc = parameters["bc"]
    Wo = parameters["Wo"]
    bo = parameters["bo"]
    Wy = parameters["Wy"]
    by = parameters["by"]
    
    # Retrieve dimensions from shapes of xt and Wy
    n_x, m = xt.shape
    n_y, n_a = Wy.shape
    ### START CODE HERE ###
    # Concatenate a_prev and xt (≈3 lines)
    concat = None
    concat[: n_a, :] = None
    concat[n_a :, :] = None
    # Compute values for ft, it, cct, c_next, ot, a_next using the formulas given figure (4) (≈6 lines)
    ft = None
    it = None
    cct = None
    c_next = None
    ot = None
    a_next = None
    
    # Compute prediction of the LSTM cell (≈1 line)
    yt_pred = None
    ### END CODE HERE ###
    # store values needed for backward propagation in cache
    cache = (a_next, c_next, a_prev, c_prev, ft, it, cct, ot, xt, parameters)
    return a_next, c_next, yt_pred, cache
In [ ]:
np.random.seed(1)
xt = np.random.randn(3,10)
a_prev = np.random.randn(5,10)
c_prev = np.random.randn(5,10)
Wf = np.random.randn(5, 5+3)
bf = np.random.randn(5,1)
Wi = np.random.randn(5, 5+3)
bi = np.random.randn(5,1)
Wo = np.random.randn(5, 5+3)
bo = np.random.randn(5,1)
Wc = np.random.randn(5, 5+3)
bc = np.random.randn(5,1)
Wy = np.random.randn(2,5)
by = np.random.randn(2,1)
parameters = {"Wf": Wf, "Wi": Wi, "Wo": Wo, "Wc": Wc, "Wy": Wy, "bf": bf, "bi": bi, "bo": bo, "bc": bc, "by": by}
a_next, c_next, yt, cache = lstm_cell_forward(xt, a_prev, c_prev, parameters)
print("a_next[4] = ", a_next[4])
print("a_next.shape = ", c_next.shape)
print("c_next[2] = ", c_next[2])
print("c_next.shape = ", c_next.shape)
print("yt[1] =", yt[1])
print("yt.shape = ", yt.shape)
print("cache[1][3] =", cache[1][3])
print("len(cache) = ", len(cache))

Expected Output:

a_next[4]: [-0.66408471 0.0036921 0.02088357 0.22834167 -0.85575339 0.00138482 0.76566531 0.34631421 -0.00215674 0.43827275]
a_next.shape: (5, 10)
c_next[2]: [ 0.63267805 1.00570849 0.35504474 0.20690913 -1.64566718 0.11832942 0.76449811 -0.0981561 -0.74348425 -0.26810932]
c_next.shape: (5, 10)
yt[1]: [ 0.79913913 0.15986619 0.22412122 0.15606108 0.97057211 0.31146381 0.00943007 0.12666353 0.39380172 0.07828381]
yt.shape: (2, 10)
cache[1][3]: [-0.16263996 1.03729328 0.72938082 -0.54101719 0.02752074 -0.30821874 0.07651101 -1.03752894 1.41219977 -0.37647422]
len(cache): 10

2.2 - Forward pass for LSTM

Now that you have implemented one step of an LSTM, you can now iterate this over this using a for-loop to process a sequence of TxTx inputs.

Figure 4: LSTM over multiple time-steps.

Exercise: Implement lstm_forward() to run an LSTM over TxTx time-steps.

Notec0c⟨0⟩ is initialized with zeros.

In [ ]:
# GRADED FUNCTION: lstm_forward
def lstm_forward(x, a0, parameters):
    """
    Implement the forward propagation of the recurrent neural network using an LSTM-cell described in Figure (3).
    Arguments:
    x -- Input data for every time-step, of shape (n_x, m, T_x).
    a0 -- Initial hidden state, of shape (n_a, m)
    parameters -- python dictionary containing:
                        Wf -- Weight matrix of the forget gate, numpy array of shape (n_a, n_a + n_x)
                        bf -- Bias of the forget gate, numpy array of shape (n_a, 1)
                        Wi -- Weight matrix of the update gate, numpy array of shape (n_a, n_a + n_x)
                        bi -- Bias of the update gate, numpy array of shape (n_a, 1)
                        Wc -- Weight matrix of the first "tanh", numpy array of shape (n_a, n_a + n_x)
                        bc -- Bias of the first "tanh", numpy array of shape (n_a, 1)
                        Wo -- Weight matrix of the output gate, numpy array of shape (n_a, n_a + n_x)
                        bo -- Bias of the output gate, numpy array of shape (n_a, 1)
                        Wy -- Weight matrix relating the hidden-state to the output, numpy array of shape (n_y, n_a)
                        by -- Bias relating the hidden-state to the output, numpy array of shape (n_y, 1)
                        
    Returns:
    a -- Hidden states for every time-step, numpy array of shape (n_a, m, T_x)
    y -- Predictions for every time-step, numpy array of shape (n_y, m, T_x)
    caches -- tuple of values needed for the backward pass, contains (list of all the caches, x)
    """
    # Initialize "caches", which will track the list of all the caches
    caches = []
    
    ### START CODE HERE ###
    # Retrieve dimensions from shapes of x and parameters['Wy'] (≈2 lines)
    n_x, m, T_x = None
    n_y, n_a = None
    
    # initialize "a", "c" and "y" with zeros (≈3 lines)
    a = None
    c = None
    y = None
    
    # Initialize a_next and c_next (≈2 lines)
    a_next = None
    c_next = None
    
    # loop over all time-steps
    for t in range(None):
        # Update next hidden state, next memory state, compute the prediction, get the cache (≈1 line)
        a_next, c_next, yt, cache = None
        # Save the value of the new "next" hidden state in a (≈1 line)
        a[:,:,t] = None
        # Save the value of the prediction in y (≈1 line)
        y[:,:,t] = None
        # Save the value of the next cell state (≈1 line)
        c[:,:,t]  = None
        # Append the cache into caches (≈1 line)
        None
        
    ### END CODE HERE ###
    
    # store values needed for backward propagation in cache
    caches = (caches, x)
    return a, y, c, caches
In [ ]:
np.random.seed(1)
x = np.random.randn(3,10,7)
a0 = np.random.randn(5,10)
Wf = np.random.randn(5, 5+3)
bf = np.random.randn(5,1)
Wi = np.random.randn(5, 5+3)
bi = np.random.randn(5,1)
Wo = np.random.randn(5, 5+3)
bo = np.random.randn(5,1)
Wc = np.random.randn(5, 5+3)
bc = np.random.randn(5,1)
Wy = np.random.randn(2,5)
by = np.random.randn(2,1)
parameters = {"Wf": Wf, "Wi": Wi, "Wo": Wo, "Wc": Wc, "Wy": Wy, "bf": bf, "bi": bi, "bo": bo, "bc": bc, "by": by}
a, y, c, caches = lstm_forward(x, a0, parameters)
print("a[4][3][6] = ", a[4][3][6])
print("a.shape = ", a.shape)
print("y[1][4][3] =", y[1][4][3])
print("y.shape = ", y.shape)
print("caches[1][1[1]] =", caches[1][1][1])
print("c[1][2][1]", c[1][2][1])
print("len(caches) = ", len(caches))

Expected Output:


a[4][3][6] = 0.172117767533
a.shape = (5, 10, 7)
y[1][4][3] = 0.95087346185
y.shape = (2, 10, 7)
caches[1][1][1] = [ 0.82797464 0.23009474 0.76201118 -0.22232814 -0.20075807 0.18656139 0.41005165]
c[1][2][1] = -0.855544916718
len(caches) = 2

Congratulations! You have now implemented the forward passes for the basic RNN and the LSTM. When using a deep learning framework, implementing the forward pass is sufficient to build systems that achieve great performance.

The rest of this notebook is optional, and will not be graded.

3 - Backpropagation in recurrent neural networks (OPTIONAL / UNGRADED)

In modern deep learning frameworks, you only have to implement the forward pass, and the framework takes care of the backward pass, so most deep learning engineers do not need to bother with the details of the backward pass. If however you are an expert in calculus and want to see the details of backprop in RNNs, you can work through this optional portion of the notebook.

When in an earlier course you implemented a simple (fully connected) neural network, you used backpropagation to compute the derivatives with respect to the cost to update the parameters. Similarly, in recurrent neural networks you can to calculate the derivatives with respect to the cost in order to update the parameters. The backprop equations are quite complicated and we did not derive them in lecture. However, we will briefly present them below.

3.1 - Basic RNN backward pass

We will start by computing the backward pass for the basic RNN-cell.


Figure 5: RNN-cell's backward pass. Just like in a fully-connected neural network, the derivative of the cost function  JJ backpropagates through the RNN by following the chain-rule from calculas. The chain-rule is also used to calculate  (JWax,JWaa,Jb)(∂J∂Wax,∂J∂Waa,∂J∂b) to update the parameters  (Wax,Waa,ba)(Wax,Waa,ba).

Deriving the one step backward functions:

To compute the rnn_cell_backward you need to compute the following equations. It is a good exercise to derive them by hand.

The derivative of tanhtanh is 1tanh(x)21−tanh⁡(x)2. You can find the complete proof here. Note that: sech(x)2=1tanh(x)2sech(x)2=1−tanh⁡(x)2

Similarly for atWax,atWaa,atb∂a⟨t⟩∂Wax,∂a⟨t⟩∂Waa,∂a⟨t⟩∂b, the derivative of tanh(u)tanh⁡(u) is (1tanh(u)2)du(1−tanh⁡(u)2)du.

The final two equations also follow same rule and are derived using the tanhtanh derivative. Note that the arrangement is done in a way to get the same dimensions to match.

In [ ]:
def rnn_cell_backward(da_next, cache):
    """
    Implements the backward pass for the RNN-cell (single time-step).
    Arguments:
    da_next -- Gradient of loss with respect to next hidden state
    cache -- python dictionary containing useful values (output of rnn_cell_forward())
    Returns:
    gradients -- python dictionary containing:
                        dx -- Gradients of input data, of shape (n_x, m)
                        da_prev -- Gradients of previous hidden state, of shape (n_a, m)
                        dWax -- Gradients of input-to-hidden weights, of shape (n_a, n_x)
                        dWaa -- Gradients of hidden-to-hidden weights, of shape (n_a, n_a)
                        dba -- Gradients of bias vector, of shape (n_a, 1)
    """
    
    # Retrieve values from cache
    (a_next, a_prev, xt, parameters) = cache
    
    # Retrieve values from parameters
    Wax = parameters["Wax"]
    Waa = parameters["Waa"]
    Wya = parameters["Wya"]
    ba = parameters["ba"]
    by = parameters["by"]
    ### START CODE HERE ###
    # compute the gradient of tanh with respect to a_next (≈1 line)
    dtanh = None
    # compute the gradient of the loss with respect to Wax (≈2 lines)
    dxt = None
    dWax = None
    # compute the gradient with respect to Waa (≈2 lines)
    da_prev = None
    dWaa = None
    # compute the gradient with respect to b (≈1 line)
    dba = None
    ### END CODE HERE ###
    
    # Store the gradients in a python dictionary
    gradients = {"dxt": dxt, "da_prev": da_prev, "dWax": dWax, "dWaa": dWaa, "dba": dba}
    
    return gradients
In [ ]:
np.random.seed(1)
xt = np.random.randn(3,10)
a_prev = np.random.randn(5,10)
Wax = np.random.randn(5,3)
Waa = np.random.randn(5,5)
Wya = np.random.randn(2,5)
b = np.random.randn(5,1)
by = np.random.randn(2,1)
parameters = {"Wax": Wax, "Waa": Waa, "Wya": Wya, "ba": ba, "by": by}
a_next, yt, cache = rnn_cell_forward(xt, a_prev, parameters)
da_next = np.random.randn(5,10)
gradients = rnn_cell_backward(da_next, cache)
print("gradients[\"dxt\"][1][2] =", gradients["dxt"][1][2])
print("gradients[\"dxt\"].shape =", gradients["dxt"].shape)
print("gradients[\"da_prev\"][2][3] =", gradients["da_prev"][2][3])
print("gradients[\"da_prev\"].shape =", gradients["da_prev"].shape)
print("gradients[\"dWax\"][3][1] =", gradients["dWax"][3][1])
print("gradients[\"dWax\"].shape =", gradients["dWax"].shape)
print("gradients[\"dWaa\"][1][2] =", gradients["dWaa"][1][2])
print("gradients[\"dWaa\"].shape =", gradients["dWaa"].shape)
print("gradients[\"dba\"][4] =", gradients["dba"][4])
print("gradients[\"dba\"].shape =", gradients["dba"].shape)

Expected Output:

gradients["dxt"][1][2] = -0.460564103059
gradients["dxt"].shape = (3, 10)
gradients["da_prev"][2][3] = 0.0842968653807
gradients["da_prev"].shape = (5, 10)
gradients["dWax"][3][1] = 0.393081873922
gradients["dWax"].shape = (5, 3)
gradients["dWaa"][1][2] = -0.28483955787
gradients["dWaa"].shape = (5, 5)
gradients["dba"][4] = [ 0.80517166]
gradients["dba"].shape = (5, 1)

Backward pass through the RNN

Computing the gradients of the cost with respect to ata⟨t⟩ at every time-step tt is useful because it is what helps the gradient backpropagate to the previous RNN-cell. To do so, you need to iterate through all the time steps starting at the end, and at each step, you increment the overall dbadbadWaadWaadWaxdWax and you store dxdx.

Instructions:

Implement the rnn_backward function. Initialize the return variables with zeros first and then loop through all the time steps while calling the rnn_cell_backward at each time timestep, update the other variables accordingly.

In [ ]:
def rnn_backward(da, caches):
    """
    Implement the backward pass for a RNN over an entire sequence of input data.
    Arguments:
    da -- Upstream gradients of all hidden states, of shape (n_a, m, T_x)
    caches -- tuple containing information from the forward pass (rnn_forward)
    
    Returns:
    gradients -- python dictionary containing:
                        dx -- Gradient w.r.t. the input data, numpy-array of shape (n_x, m, T_x)
                        da0 -- Gradient w.r.t the initial hidden state, numpy-array of shape (n_a, m)
                        dWax -- Gradient w.r.t the input's weight matrix, numpy-array of shape (n_a, n_x)
                        dWaa -- Gradient w.r.t the hidden state's weight matrix, numpy-arrayof shape (n_a, n_a)
                        dba -- Gradient w.r.t the bias, of shape (n_a, 1)
    """
        
    ### START CODE HERE ###
    
    # Retrieve values from the first cache (t=1) of caches (≈2 lines)
    (caches, x) = None
    (a1, a0, x1, parameters) = None
    
    # Retrieve dimensions from da's and x1's shapes (≈2 lines)
    n_a, m, T_x = None
    n_x, m = None
    
    # initialize the gradients with the right sizes (≈6 lines)
    dx = None
    dWax = None
    dWaa = None
    dba = None
    da0 = None
    da_prevt = None
    
    # Loop through all the time steps
    for t in reversed(range(None)):
        # Compute gradients at time step t. Choose wisely the "da_next" and the "cache" to use in the backward propagation step. (≈1 line)
        gradients = None
        # Retrieve derivatives from gradients (≈ 1 line)
        dxt, da_prevt, dWaxt, dWaat, dbat = gradients["dxt"], gradients["da_prev"], gradients["dWax"], gradients["dWaa"], gradients["dba"]
        # Increment global derivatives w.r.t parameters by adding their derivative at time-step t (≈4 lines)
        dx[:, :, t] = None
        dWax += None
        dWaa += None
        dba += None
        
    # Set da0 to the gradient of a which has been backpropagated through all time-steps (≈1 line) 
    da0 = None
    ### END CODE HERE ###
    # Store the gradients in a python dictionary
    gradients = {"dx": dx, "da0": da0, "dWax": dWax, "dWaa": dWaa,"dba": dba}
    
    return gradients
In [ ]:
np.random.seed(1)
x = np.random.randn(3,10,4)
a0 = np.random.randn(5,10)
Wax = np.random.randn(5,3)
Waa = np.random.randn(5,5)
Wya = np.random.randn(2,5)
ba = np.random.randn(5,1)
by = np.random.randn(2,1)
parameters = {"Wax": Wax, "Waa": Waa, "Wya": Wya, "ba": ba, "by": by}
a, y, caches = rnn_forward(x, a0, parameters)
da = np.random.randn(5, 10, 4)
gradients = rnn_backward(da, caches)
print("gradients[\"dx\"][1][2] =", gradients["dx"][1][2])
print("gradients[\"dx\"].shape =", gradients["dx"].shape)
print("gradients[\"da0\"][2][3] =", gradients["da0"][2][3])
print("gradients[\"da0\"].shape =", gradients["da0"].shape)
print("gradients[\"dWax\"][3][1] =", gradients["dWax"][3][1])
print("gradients[\"dWax\"].shape =", gradients["dWax"].shape)
print("gradients[\"dWaa\"][1][2] =", gradients["dWaa"][1][2])
print("gradients[\"dWaa\"].shape =", gradients["dWaa"].shape)
print("gradients[\"dba\"][4] =", gradients["dba"][4])
print("gradients[\"dba\"].shape =", gradients["dba"].shape)

Expected Output:

gradients["dx"][1][2] = [-2.07101689 -0.59255627 0.02466855 0.01483317]
gradients["dx"].shape = (3, 10, 4)
gradients["da0"][2][3] = -0.314942375127
gradients["da0"].shape = (5, 10)
gradients["dWax"][3][1] = 11.2641044965
gradients["dWax"].shape = (5, 3)
gradients["dWaa"][1][2] = 2.30333312658
gradients["dWaa"].shape = (5, 5)
gradients["dba"][4] = [-0.74747722]
gradients["dba"].shape = (5, 1)

3.2 - LSTM backward pass

3.2.1 One Step backward

The LSTM backward pass is slighltly more complicated than the forward one. We have provided you with all the equations for the LSTM backward pass below. (If you enjoy calculus exercises feel free to try deriving these from scratch yourself.)

3.2.2 gate derivatives

dΓto=danexttanh(cnext)Γto(1Γto)(7)(7)dΓo⟨t⟩=danext∗tanh⁡(cnext)∗Γo⟨t⟩∗(1−Γo⟨t⟩)

dc̃ t=dcnextΓtu+Γto(1tanh(cnext)2)itdanextc̃ t(1tanh(c̃ )2)(8)(8)dc~⟨t⟩=dcnext∗Γu⟨t⟩+Γo⟨t⟩(1−tanh⁡(cnext)2)∗it∗danext∗c~⟨t⟩∗(1−tanh⁡(c~)2)

dΓtu=dcnextc̃ t+Γto(1tanh(cnext)2)c̃ tdanextΓtu(1Γtu)(9)(9)dΓu⟨t⟩=dcnext∗c~⟨t⟩+Γo⟨t⟩(1−tanh⁡(cnext)2)∗c~⟨t⟩∗danext∗Γu⟨t⟩∗(1−Γu⟨t⟩)

dΓtf=dcnextc̃ prev+Γto(1tanh(cnext)2)cprevdanextΓtf(1Γtf)(10)(10)dΓf⟨t⟩=dcnext∗c~prev+Γo⟨t⟩(1−tanh⁡(cnext)2)∗cprev∗danext∗Γf⟨t⟩∗(1−Γf⟨t⟩)

3.2.3 parameter derivatives

dWf=dΓtf(aprevxt)T(11)(11)dWf=dΓf⟨t⟩∗(aprevxt)T
dWu=dΓtu(aprevxt)T(12)(12)dWu=dΓu⟨t⟩∗(aprevxt)T
dWc=dc̃ t(aprevxt)T(13)(13)dWc=dc~⟨t⟩∗(aprevxt)T
dWo=dΓto(aprevxt)T(14)(14)dWo=dΓo⟨t⟩∗(aprevxt)T

To calculate dbf,dbu,dbc,dbodbf,dbu,dbc,dbo you just need to sum across the horizontal (axis= 1) axis on dΓtf,dΓtu,dc̃ t,dΓtodΓf⟨t⟩,dΓu⟨t⟩,dc~⟨t⟩,dΓo⟨t⟩ respectively. Note that you should have the keep_dims = True option.

Finally, you will compute the derivative with respect to the previous hidden state, previous memory state, and input.

daprev=WTfdΓtf+WTudΓtu+WTcdc̃ t+WTodΓto(15)(15)daprev=WfT∗dΓf⟨t⟩+WuT∗dΓu⟨t⟩+WcT∗dc~⟨t⟩+WoT∗dΓo⟨t⟩
Here, the weights for equations 13 are the first n_a, (i.e.  Wf=Wf[:na,:]Wf=Wf[:na,:] etc...)

dcprev=dcnextΓtf+Γto(1tanh(cnext)2)Γtfdanext(16)(16)dcprev=dcnextΓf⟨t⟩+Γo⟨t⟩∗(1−tanh⁡(cnext)2)∗Γf⟨t⟩∗danext
dxt=WTfdΓtf+WTudΓtu+WTcdc̃ t+WTodΓto(17)(17)dx⟨t⟩=WfT∗dΓf⟨t⟩+WuT∗dΓu⟨t⟩+WcT∗dc~t+WoT∗dΓo⟨t⟩
where the weights for equation 15 are from n_a to the end, (i.e.  Wf=Wf[na:,:]Wf=Wf[na:,:] etc...)

Exercise: Implement lstm_cell_backward by implementing equations 7177−17 below. Good luck! :)

In [ ]:
def lstm_cell_backward(da_next, dc_next, cache):
    """
    Implement the backward pass for the LSTM-cell (single time-step).
    Arguments:
    da_next -- Gradients of next hidden state, of shape (n_a, m)
    dc_next -- Gradients of next cell state, of shape (n_a, m)
    cache -- cache storing information from the forward pass
    Returns:
    gradients -- python dictionary containing:
                        dxt -- Gradient of input data at time-step t, of shape (n_x, m)
                        da_prev -- Gradient w.r.t. the previous hidden state, numpy array of shape (n_a, m)
                        dc_prev -- Gradient w.r.t. the previous memory state, of shape (n_a, m, T_x)
                        dWf -- Gradient w.r.t. the weight matrix of the forget gate, numpy array of shape (n_a, n_a + n_x)
                        dWi -- Gradient w.r.t. the weight matrix of the update gate, numpy array of shape (n_a, n_a + n_x)
                        dWc -- Gradient w.r.t. the weight matrix of the memory gate, numpy array of shape (n_a, n_a + n_x)
                        dWo -- Gradient w.r.t. the weight matrix of the output gate, numpy array of shape (n_a, n_a + n_x)
                        dbf -- Gradient w.r.t. biases of the forget gate, of shape (n_a, 1)
                        dbi -- Gradient w.r.t. biases of the update gate, of shape (n_a, 1)
                        dbc -- Gradient w.r.t. biases of the memory gate, of shape (n_a, 1)
                        dbo -- Gradient w.r.t. biases of the output gate, of shape (n_a, 1)
    """
    # Retrieve information from "cache"
    (a_next, c_next, a_prev, c_prev, ft, it, cct, ot, xt, parameters) = cache
    
    ### START CODE HERE ###
    # Retrieve dimensions from xt's and a_next's shape (≈2 lines)
    n_x, m = None
    n_a, m = None
    
    # Compute gates related derivatives, you can find their values can be found by looking carefully at equations (7) to (10) (≈4 lines)
    dot = None
    dcct = None
    dit = None
    dft = None
    
    # Code equations (7) to (10) (≈4 lines)
    dit = None
    dft = None
    dot = None
    dcct = None
    # Compute parameters related derivatives. Use equations (11)-(14) (≈8 lines)
    dWf = None
    dWi = None
    dWc = None
    dWo = None
    dbf = None
    dbi = None
    dbc = None
    dbo = None
    # Compute derivatives w.r.t previous hidden state, previous memory state and input. Use equations (15)-(17). (≈3 lines)
    da_prev = None
    dc_prev = None
    dxt = None
    ### END CODE HERE ###
    
    # Save gradients in dictionary
    gradients = {"dxt": dxt, "da_prev": da_prev, "dc_prev": dc_prev, "dWf": dWf,"dbf": dbf, "dWi": dWi,"dbi": dbi,
                "dWc": dWc,"dbc": dbc, "dWo": dWo,"dbo": dbo}
    return gradients
In [ ]:
np.random.seed(1)
xt = np.random.randn(3,10)
a_prev = np.random.randn(5,10)
c_prev = np.random.randn(5,10)
Wf = np.random.randn(5, 5+3)
bf = np.random.randn(5,1)
Wi = np.random.randn(5, 5+3)
bi = np.random.randn(5,1)
Wo = np.random.randn(5, 5+3)
bo = np.random.randn(5,1)
Wc = np.random.randn(5, 5+3)
bc = np.random.randn(5,1)
Wy = np.random.randn(2,5)
by = np.random.randn(2,1)
parameters = {"Wf": Wf, "Wi": Wi, "Wo": Wo, "Wc": Wc, "Wy": Wy, "bf": bf, "bi": bi, "bo": bo, "bc": bc, "by": by}
a_next, c_next, yt, cache = lstm_cell_forward(xt, a_prev, c_prev, parameters)
da_next = np.random.randn(5,10)
dc_next = np.random.randn(5,10)
gradients = lstm_cell_backward(da_next, dc_next, cache)
print("gradients[\"dxt\"][1][2] =", gradients["dxt"][1][2])
print("gradients[\"dxt\"].shape =", gradients["dxt"].shape)
print("gradients[\"da_prev\"][2][3] =", gradients["da_prev"][2][3])
print("gradients[\"da_prev\"].shape =", gradients["da_prev"].shape)
print("gradients[\"dc_prev\"][2][3] =", gradients["dc_prev"][2][3])
print("gradients[\"dc_prev\"].shape =", gradients["dc_prev"].shape)
print("gradients[\"dWf\"][3][1] =", gradients["dWf"][3][1])
print("gradients[\"dWf\"].shape =", gradients["dWf"].shape)
print("gradients[\"dWi\"][1][2] =", gradients["dWi"][1][2])
print("gradients[\"dWi\"].shape =", gradients["dWi"].shape)
print("gradients[\"dWc\"][3][1] =", gradients["dWc"][3][1])
print("gradients[\"dWc\"].shape =", gradients["dWc"].shape)
print("gradients[\"dWo\"][1][2] =", gradients["dWo"][1][2])
print("gradients[\"dWo\"].shape =", gradients["dWo"].shape)
print("gradients[\"dbf\"][4] =", gradients["dbf"][4])
print("gradients[\"dbf\"].shape =", gradients["dbf"].shape)
print("gradients[\"dbi\"][4] =", gradients["dbi"][4])
print("gradients[\"dbi\"].shape =", gradients["dbi"].shape)
print("gradients[\"dbc\"][4] =", gradients["dbc"][4])
print("gradients[\"dbc\"].shape =", gradients["dbc"].shape)
print("gradients[\"dbo\"][4] =", gradients["dbo"][4])
print("gradients[\"dbo\"].shape =", gradients["dbo"].shape)

Expected Output:

gradients["dxt"][1][2] = 3.23055911511
gradients["dxt"].shape = (3, 10)
gradients["da_prev"][2][3] = -0.0639621419711
gradients["da_prev"].shape = (5, 10)
gradients["dc_prev"][2][3] = 0.797522038797
gradients["dc_prev"].shape = (5, 10)
gradients["dWf"][3][1] = -0.147954838164
gradients["dWf"].shape = (5, 8)
gradients["dWi"][1][2] = 1.05749805523
gradients["dWi"].shape = (5, 8)
gradients["dWc"][3][1] = 2.30456216369
gradients["dWc"].shape = (5, 8)
gradients["dWo"][1][2] = 0.331311595289
gradients["dWo"].shape = (5, 8)
gradients["dbf"][4] = [ 0.18864637]
gradients["dbf"].shape = (5, 1)
gradients["dbi"][4] = [-0.40142491]
gradients["dbi"].shape = (5, 1)
gradients["dbc"][4] = [ 0.25587763]
gradients["dbc"].shape = (5, 1)
gradients["dbo"][4] = [ 0.13893342]
gradients["dbo"].shape = (5, 1)

3.3 Backward pass through the LSTM RNN

This part is very similar to the rnn_backward function you implemented above. You will first create variables of the same dimension as your return variables. You will then iterate over all the time steps starting from the end and call the one step function you implemented for LSTM at each iteration. You will then update the parameters by summing them individually. Finally return a dictionary with the new gradients.

Instructions: Implement the lstm_backward function. Create a for loop starting from TxTx and going backward. For each step call lstm_cell_backward and update the your old gradients by adding the new gradients to them. Note that dxt is not updated but is stored.

In [ ]:

你可能感兴趣的:(Coursera_NG)