Object Detection(目标检测神文)

Object Detection(目标检测神文)

目标检测神文,非常全而且持续在更新。转发自:https://handong1587.github.io/deep_learning/2015/10/09/object-detection.html,如有侵权联系删除。
更新时间:
20190226
不再更新,最新检测文章请移步:https://blog.csdn.net/hw5226349/article/details/88733364
我会跟进原作者博客持续更新,加入自己对目标检测领域的一些新研究及论文解读。博客根据需求直接进行关键字搜索,例如2018,可找到最新论文。

文章目录

  • Papers
    • 损失函数
      • [CVPR2019] Generalized Intersection over Union: A Metric and A Loss for Bounding Box Regression
      • Deep Neural Networks for Object Detection
      • OverFeat: Integrated Recognition, Localization and Detection using Convolutional Networks
    • R-CNN
      • Rich feature hierarchies for accurate object detection and semantic segmentation
    • Fast R-CNN
      • Fast R-CNN
      • A-Fast-RCNN: Hard Positive Generation via Adversary for Object Detection
    • Faster R-CNN
      • Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks
      • R-CNN minus R
      • Faster R-CNN in MXNet with distributed implementation and data parallelization
      • Contextual Priming and Feedback for Faster R-CNN
      • An Implementation of Faster RCNN with Study for Region Sampling
      • Interpretable R-CNN
      • [AAAI2019]Object Detection based on Region Decomposition and Assembly
    • Light-Head R-CNN
      • Light-Head R-CNN: In Defense of Two-Stage Object Detector
      • Cascade R-CNN: Delving into High Quality Object Detection
    • MultiBox
      • Scalable Object Detection using Deep Neural Networks
      • Scalable, High-Quality Object Detection
    • SPP-Net
      • Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition
      • DeepID-Net: Deformable Deep Convolutional Neural Networks for Object Detection
      • Object Detectors Emerge in Deep Scene CNNs
      • segDeepM: Exploiting Segmentation and Context in Deep Neural Networks for Object Detection
      • Object Detection Networks on Convolutional Feature Maps
      • Improving Object Detection with Deep Convolutional Networks via Bayesian Optimization and Structured Prediction
      • DeepBox: Learning Objectness with Convolutional Networks
    • MR-CNN
      • Object detection via a multi-region & semantic segmentation-aware CNN model
    • YOLO
      • You Only Look Once: Unified, Real-Time Object Detection
      • darkflow - translate darknet to tensorflow. Load trained weights, retrain/fine-tune them using tensorflow, export constant graph def to C++
      • Start Training YOLO with Our Own Data
      • YOLO: Core ML versus MPSNNGraph
      • TensorFlow YOLO object detection on Android
      • Computer Vision in iOS – Object Detection
    • YOLOv2
      • YOLO9000: Better, Faster, Stronger
      • darknet_scripts
      • Yolo_mark: GUI for marking bounded boxes of objects in images for training Yolo v2
      • LightNet: Bringing pjreddie’s DarkNet out of the shadows
      • YOLO v2 Bounding Box Tool
    • YOLOv3
      • YOLOv3: An Incremental Improvement
      • YOLO-LITE: A Real-Time Object Detection Algorithm Optimized for Non-GPU Computers
      • AttentionNet: Aggregating Weak Directions for Accurate Object Detection
    • DenseBox
      • DenseBox: Unifying Landmark Localization with End to End Object Detection
    • SSD
      • SSD: Single Shot MultiBox Detector
    • DSSD
      • DSSD : Deconvolutional Single Shot Detector
      • Enhancement of SSD by concatenating feature maps for object detection
      • Context-aware Single-Shot Detector
      • Feature-Fused SSD: Fast Detection for Small Objects
    • FSSD
      • FSSD: Feature Fusion Single Shot Multibox Detector
      • Weaving Multi-scale Context for Single Shot Detector
    • ESSD
      • Extend the shallow part of Single Shot MultiBox Detector via Convolutional Neural Network
      • Tiny SSD: A Tiny Single-shot Detection Deep Convolutional Neural Network for Real-time Embedded Object Detection
      • MDSSD: Multi-scale Deconvolutional Single Shot Detector for small objects
    • Inside-Outside Net (ION)
      • Inside-Outside Net: Detecting Objects in Context with Skip Pooling and Recurrent Neural Networks
      • Adaptive Object Detection Using Adjacency and Zoom Prediction
      • G-CNN: an Iterative Grid Based Object Detector
    • Factors in Finetuning Deep Model for object detection
      • Factors in Finetuning Deep Model for Object Detection with Long-tail Distribution
      • We don’t need no bounding-boxes: Training object class detectors using only human verification
      • HyperNet: Towards Accurate Region Proposal Generation and Joint Object Detection
      • A MultiPath Network for Object Detection
    • CRAFT
      • CRAFT Objects from Images
    • OHEM
      • Training Region-based Object Detectors with Online Hard Example Mining
      • S-OHEM: Stratified Online Hard Example Mining for Object Detection
      • Exploit All the Layers: Fast and Accurate CNN Object Detector with Scale Dependent Pooling and Cascaded Rejection Classifiers
    • R-FCN
      • R-FCN: Object Detection via Region-based Fully Convolutional Networks
      • R-FCN-3000 at 30fps: Decoupling Detection and Classification
      • Recycle deep features for better object detection
    • MS-CNN
      • A Unified Multi-scale Deep Convolutional Neural Network for Fast Object Detection
      • Multi-stage Object Detection with Group Recursive Learning
      • Subcategory-aware Convolutional Neural Networks for Object Proposals and Detection
    • PVANET
      • PVANet: Lightweight Deep Neural Networks for Real-time Object Detection
    • GBD-Net
      • Gated Bi-directional CNN for Object Detection
      • Crafting GBD-Net for Object Detection
      • StuffNet: Using ‘Stuff’ to Improve Object Detection
      • Generalized Haar Filter based Deep Networks for Real-Time Object Detection in Traffic Scene
      • Hierarchical Object Detection with Deep Reinforcement Learning
      • Learning to detect and localize many objects from few examples
      • Speed/accuracy trade-offs for modern convolutional object detectors
      • SqueezeDet: Unified, Small, Low Power Fully Convolutional Neural Networks for Real-Time Object Detection for Autonomous Driving
    • Feature Pyramid Network (FPN)
      • Feature Pyramid Networks for Object Detection
      • Action-Driven Object Detection with Top-Down Visual Attentions
      • Beyond Skip Connections: Top-Down Modulation for Object Detection
      • Wide-Residual-Inception Networks for Real-time Object Detection
      • Attentional Network for Visual Object Detection
      • Learning Chained Deep Features and Classifiers for Cascade in Object Detection
      • DeNet: Scalable Real-time Object Detection with Directed Sparse Sampling
      • Discriminative Bimodal Networks for Visual Localization and Detection with Natural Language Queries
      • Spatial Memory for Context Reasoning in Object Detection
      • Accurate Single Stage Detector Using Recurrent Rolling Convolution
      • Deep Occlusion Reasoning for Multi-Camera Multi-Target Detection
      • LCDet: Low-Complexity Fully-Convolutional Neural Networks for Object Detection in Embedded Systems
      • Point Linking Network for Object Detection
      • Perceptual Generative Adversarial Networks for Small Object Detection
      • Few-shot Object Detection
      • Yes-Net: An effective Detector Based on Global Information
      • SMC Faster R-CNN: Toward a scene-specialized multi-object detector
      • Towards lightweight convolutional neural networks for object detection
      • RON: Reverse Connection with Objectness Prior Networks for Object Detection
      • Mimicking Very Efficient Network for Object Detection
      • Residual Features and Unified Prediction Network for Single Stage Detection
      • Deformable Part-based Fully Convolutional Network for Object Detection
      • Adaptive Feeding: Achieving Fast and Accurate Detections by Adaptively Combining Object Detectors
      • Recurrent Scale Approximation for Object Detection in CNN
    • DSOD
      • DSOD: Learning Deeply Supervised Object Detectors from Scratch
      • Object Detection from Scratch with Deep Supervision
      • Focal Loss for Dense Object Detection
      • Focal Loss Dense Detector for Vehicle Surveillance
      • CoupleNet: Coupling Global Structure with Local Parts for Object Detection
      • Incremental Learning of Object Detectors without Catastrophic Forgetting
      • Zoom Out-and-In Network with Map Attention Decision for Region Proposal and Object Detection
      • StairNet: Top-Down Semantic Aggregation for Accurate One Shot Detection
      • Dynamic Zoom-in Network for Fast Object Detection in Large Images
      • Zero-Annotation Object Detection with Web Knowledge Transfer
    • MegDet
      • MegDet: A Large Mini-Batch Object Detector
      • Single-Shot Refinement Neural Network for Object Detection
      • Receptive Field Block Net for Accurate and Fast Object Detection
      • An Analysis of Scale Invariance in Object Detection - SNIP
      • Feature Selective Networks for Object Detection
      • Learning a Rotation Invariant Detector with Rotatable Bounding Box
      • Scalable Object Detection for Stylized Objects
      • Learning Object Detectors from Scratch with Gated Recurrent Feature Pyramids
      • Deep Regionlets for Object Detection
      • Training and Testing Object Detectors with Virtual Images
      • Large-Scale Object Discovery and Detector Adaptation from Unlabeled Video
      • Spot the Difference by Object Detection
      • Localization-Aware Active Learning for Object Detection
      • Object Detection with Mask-based Feature Encoding
      • LSTD: A Low-Shot Transfer Detector for Object Detection
      • Domain Adaptive Faster R-CNN for Object Detection in the Wild
      • Pseudo Mask Augmented Object Detection
      • Revisiting RCNN: On Awakening the Classification Power of Faster RCNN
      • Decoupled Classification Refinement: Hard False Positive Suppression for Object Detection
      • Learning Region Features for Object Detection
      • Single-Shot Bidirectional Pyramid Networks for High-Quality Object Detection
      • Object Detection for Comics using Manga109 Annotations
      • Task-Driven Super Resolution: Object Detection in Low-resolution Images
      • Transferring Common-Sense Knowledge for Object Detection
      • Multi-scale Location-aware Kernel Representation for Object Detection
      • Loss Rank Mining: A General Hard Example Mining Method for Real-time Detectors
      • DetNet: A Backbone network for Object Detection
      • Robust Physical Adversarial Attack on Faster R-CNN Object Detector
      • AdvDetPatch: Attacking Object Detectors with Adversarial Patches
      • Attacking Object Detectors via Imperceptible Patches on Background
      • Physical Adversarial Examples for Object Detectors
      • Quantization Mimic: Towards Very Tiny CNN for Object Detection
      • Object detection at 200 Frames Per Second
      • Object Detection using Domain Randomization and Generative Adversarial Refinement of Synthetic Images
      • SNIPER: Efficient Multi-Scale Training
      • Soft Sampling for Robust Object Detection
      • MetaAnchor: Learning to Detect Objects with Customized Anchors
      • Localization Recall Precision (LRP): A New Performance Metric for Object Detection
      • Auto-Context R-CNN
      • Pooling Pyramid Network for Object Detection
      • Modeling Visual Context is Key to Augmenting Object Detection Datasets
      • Dual Refinement Network for Single-Shot Object Detection
      • Acquisition of Localization Confidence for Accurate Object Detection
      • CornerNet: Detecting Objects as Paired Keypoints
      • Unsupervised Hard Example Mining from Videos for Improved Object Detection
      • SAN: Learning Relationship between Convolutional Features for Multi-Scale Object Detection
      • A Survey of Modern Object Detection Literature using Deep Learning
      • Tiny-DSOD: Lightweight Object Detection for Resource-Restricted Usages
      • Deep Feature Pyramid Reconfiguration for Object Detection
      • MDCN: Multi-Scale, Deep Inception Convolutional Neural Networks for Efficient Object Detection
      • Recent Advances in Object Detection in the Age of Deep Convolutional Neural Networks
      • Deep Learning for Generic Object Detection: A Survey
      • Training Confidence-Calibrated Classifier for Detecting Out-of-Distribution Samples
      • ScratchDet:Exploring to Train Single-Shot Object Detectors from Scratch
      • Fast and accurate object detection in high resolution 4K and 8K video using GPUs
      • Hybrid Knowledge Routed Modules for Large-scale Object Detection
      • Gradient Harmonized Single-stage Detector
      • M2Det: A Single-Shot Object Detector based on Multi-Level Feature Pyramid Network
      • BAN: Focusing on Boundary Context for Object Detection
      • Multi-layer Pruning Framework for Compressing Single Shot MultiBox Detector
      • R2CNN++: Multi-Dimensional Attention Based Rotation Invariant Detector with Robust Anchor Strategy
      • DeRPN: Taking a further step toward more general object detection
      • Fast Efficient Object Detection Using Selective Attention
      • Sampling Techniques for Large-Scale Object Detection from Sparsely Annotated Objects
      • Efficient Coarse-to-Fine Non-Local Module for the Detection of Small Objects
      • Deep Regionlets: Blended Representation and Deep Learning for Generic Object Detection
      • Grid R-CNN
      • Transferable Adversarial Attacks for Image and Video Object Detection
      • Anchor Box Optimization for Object Detection
      • AutoFocus: Efficient Multi-Scale Inference
      • Practical Adversarial Attack Against Object Detector
      • Learning Efficient Detector with Semi-supervised Adaptive Distillation
      • Scale-Aware Trident Networks for Object Detection
      • Region Proposal by Guided Anchoring
      • Consistent Optimization for Single-Shot Object Detection
      • Bottom-up Object Detection by Grouping Extreme and Center Points
      • A Single-shot Object Detector with Feature Aggragation and Enhancement
      • Bag of Freebies for Training Object Detection Neural Networks
    • Non-Maximum Suppression (NMS)
      • End-to-End Integration of a Convolutional Network, Deformable Parts Model and Non-Maximum Suppression
      • A convnet for non-maximum suppression
      • Soft-NMS – Improving Object Detection With One Line of Code
      • Learning non-maximum suppression
      • Relation Networks for Object Detection
      • Learning Pairwise Relationship for Multi-object Detection in Crowded Scenes
      • Daedalus: Breaking Non-Maximum Suppression in Object Detection via Adversarial Examples
    • Adversarial Examples
      • Adversarial Examples that Fool Detectors
      • Adversarial Examples Are Not Easily Detected: Bypassing Ten Detection Methods
    • Weakly Supervised Object Detection
      • Track and Transfer: Watching Videos to Simulate Strong Human Supervision for Weakly-Supervised Object Detection
      • Weakly supervised object detection using pseudo-strong labels
      • Saliency Guided End-to-End Learning for Weakly Supervised Object Detection
      • Visual and Semantic Knowledge Transfer for Large Scale Semi-supervised Object Detection
    • Video Object Detection
      • Learning Object Class Detectors from Weakly Annotated Video
      • Analysing domain shift factors between videos and images for object detection
      • Video Object Recognition
      • Deep Learning for Saliency Prediction in Natural Video
      • T-CNN: Tubelets with Convolutional Neural Networks for Object Detection from Videos
      • Object Detection from Video Tubelets with Convolutional Neural Networks
      • Object Detection in Videos with Tubelets and Multi-context Cues
      • Context Matters: Refining Object Detection in Video with Recurrent Neural Networks
      • CNN Based Object Detection in Large Video Images
      • Object Detection in Videos with Tubelet Proposal Networks
      • Flow-Guided Feature Aggregation for Video Object Detection
      • Video Object Detection using Faster R-CNN
      • Improving Context Modeling for Video Object Detection and Tracking
      • Temporal Dynamic Graph LSTM for Action-driven Video Object Detection
      • Mobile Video Object Detection with Temporally-Aware Feature Maps
      • Towards High Performance Video Object Detection
      • Impression Network for Video Object Detection
      • Spatial-Temporal Memory Networks for Video Object Detection
      • 3D-DETNet: a Single Stage Video-Based Vehicle Detector
      • Object Detection in Videos by Short and Long Range Object Linking
      • Object Detection in Video with Spatiotemporal Sampling Networks
      • Towards High Performance Video Object Detection for Mobiles
      • Optimizing Video Object Detection via a Scale-Time Lattice
      • Pack and Detect: Fast Object Detection in Videos Using Region-of-Interest Packing
      • Fast Object Detection in Compressed Video
      • Tube-CNN: Modeling temporal evolution of appearance for object detection in video
      • AdaScale: Towards Real-time Video Object Detection Using Adaptive Scaling
    • Object Detection on Mobile Devices
      • Pelee: A Real-Time Object Detection System on Mobile Devices
    • Object Detection in 3D
      • Vote3Deep: Fast Object Detection in 3D Point Clouds Using Efficient Convolutional Neural Networks
      • Complex-YOLO: Real-time 3D Object Detection on Point Clouds
      • Focal Loss in 3D Object Detection
      • 3D Object Detection Using Scale Invariant and Feature Reweighting Networks
      • 3D Backbone Network for 3D Object Detection
    • Object Detection on RGB-D
      • Learning Rich Features from RGB-D Images for Object Detection and Segmentation
      • Differential Geometry Boosts Convolutional Neural Networks for Object Detection
      • A Self-supervised Learning System for Object Detection using Physics Simulation and Multi-view Pose Estimation
    • Zero-Shot Object Detection
      • Zero-Shot Detection
      • Zero-Shot Object Detection
      • Zero-Shot Object Detection: Learning to Simultaneously Recognize and Localize Novel Concepts
      • Zero-Shot Object Detection by Hybrid Region Embedding
    • Salient Object Detection
      • Best Deep Saliency Detection Models (CVPR 2016 & 2015)
      • Large-scale optimization of hierarchical features for saliency prediction in natural images
      • Predicting Eye Fixations using Convolutional Neural Networks
      • Saliency Detection by Multi-Context Deep Learning
      • DeepSaliency: Multi-Task Deep Neural Network Model for Salient Object Detection
      • SuperCNN: A Superpixelwise Convolutional Neural Network for Salient Object Detection
      • Shallow and Deep Convolutional Networks for Saliency Prediction
      • Recurrent Attentional Networks for Saliency Detection
      • Two-Stream Convolutional Networks for Dynamic Saliency Prediction
    • Unconstrained Salient Object Detection
      • Unconstrained Salient Object Detection via Proposal Subset Optimization
      • DHSNet: Deep Hierarchical Saliency Network for Salient Object Detection
      • Salient Object Subitizing
      • Deeply-Supervised Recurrent Convolutional Neural Network for Saliency Detection
      • Saliency Detection via Combining Region-Level and Pixel-Level Predictions with CNNs
      • Edge Preserving and Multi-Scale Contextual Neural Network for Salient Object Detection
      • A Deep Multi-Level Network for Saliency Prediction
      • Visual Saliency Detection Based on Multiscale Deep CNN Features
      • A Deep Spatial Contextual Long-term Recurrent Convolutional Network for Saliency Detection
      • Deeply supervised salient object detection with short connections
      • Weakly Supervised Top-down Salient Object Detection
      • SalGAN: Visual Saliency Prediction with Generative Adversarial Networks
      • Visual Saliency Prediction Using a Mixture of Deep Neural Networks
      • A Fast and Compact Salient Score Regression Network Based on Fully Convolutional Network
      • Saliency Detection by Forward and Backward Cues in Deep-CNNs
      • Supervised Adversarial Networks for Image Saliency Detection
      • Group-wise Deep Co-saliency Detection
      • Towards the Success Rate of One: Real-time Unconstrained Salient Object Detection
      • Amulet: Aggregating Multi-level Convolutional Features for Salient Object Detection
      • Learning Uncertain Convolutional Features for Accurate Saliency Detection
      • Deep Edge-Aware Saliency Detection
      • Self-explanatory Deep Salient Object Detection
      • PiCANet: Learning Pixel-wise Contextual Attention in ConvNets and Its Application in Saliency Detection
      • DeepFeat: A Bottom Up and Top Down Saliency Model Based on Deep Features of Convolutional Neural Nets
      • Recurrently Aggregating Deep Features for Salient Object Detection
      • Deep saliency: What is learnt by a deep network about saliency?
      • Contrast-Oriented Deep Neural Networks for Salient Object Detection
      • Salient Object Detection by Lossless Feature Reflection
      • HyperFusion-Net: Densely Reflective Fusion for Salient Object Detection
    • Video Saliency Detection
      • Deep Learning For Video Saliency Detection
      • Video Salient Object Detection Using Spatiotemporal Deep Features
      • Predicting Video Saliency with Object-to-Motion CNN and Two-layer Convolutional LSTM
    • Visual Relationship Detection
      • Visual Relationship Detection with Language Priors
      • ViP-CNN: A Visual Phrase Reasoning Convolutional Neural Network for Visual Relationship Detection
      • Visual Translation Embedding Network for Visual Relation Detection
      • Deep Variation-structured Reinforcement Learning for Visual Relationship and Attribute Detection
      • Detecting Visual Relationships with Deep Relational Networks
      • Identifying Spatial Relations in Images using Convolutional Neural Networks
      • PPR-FCN: Weakly Supervised Visual Relation Detection via Parallel Pairwise R-FCN
      • Natural Language Guided Visual Relationship Detection
      • Detecting Visual Relationships Using Box Attention
      • Google AI Open Images - Visual Relationship Track
      • Context-Dependent Diffusion Network for Visual Relationship Detection
      • A Problem Reduction Approach for Visual Relationships Detection
    • Face Deteciton
      • Multi-view Face Detection Using Deep Convolutional Neural Networks
      • From Facial Parts Responses to Face Detection: A Deep Learning Approach
      • Compact Convolutional Neural Network Cascade for Face Detection
      • Face Detection with End-to-End Integration of a ConvNet and a 3D Model
      • CMS-RCNN: Contextual Multi-Scale Region-based CNN for Unconstrained Face Detection
      • Towards a Deep Learning Framework for Unconstrained Face Detection
      • Supervised Transformer Network for Efficient Face Detection
      • UnitBox: An Advanced Object Detection Network
      • Bootstrapping Face Detection with Hard Negative Examples
      • Grid Loss: Detecting Occluded Faces
      • A Multi-Scale Cascade Fully Convolutional Network Face Detector
    • MTCNN
      • Joint Face Detection and Alignment using Multi-task Cascaded Convolutional Neural Networks
      • Face Detection using Deep Learning: An Improved Faster RCNN Approach
      • Faceness-Net: Face Detection through Deep Facial Part Responses
      • Multi-Path Region-Based Convolutional Neural Network for Accurate Detection of Unconstrained “Hard Faces”
      • End-To-End Face Detection and Recognition
      • Face R-CNN
      • Face Detection through Scale-Friendly Deep Convolutional Networks
      • Scale-Aware Face Detection
      • Detecting Faces Using Inside Cascaded Contextual CNN
      • Multi-Branch Fully Convolutional Network for Face Detection
      • SSH: Single Stage Headless Face Detector
      • Dockerface: an easy to install and use Faster R-CNN face detector in a Docker container
      • FaceBoxes: A CPU Real-time Face Detector with High Accuracy
      • S3FD: Single Shot Scale-invariant Face Detector
      • Detecting Faces Using Region-based Fully Convolutional Networks
      • AffordanceNet: An End-to-End Deep Learning Approach for Object Affordance Detection
      • Face Attention Network: An effective Face Detector for the Occluded Faces
      • Feature Agglomeration Networks for Single Stage Face Detection
      • Face Detection Using Improved Faster RCNN
      • PyramidBox: A Context-assisted Single Shot Face Detector
      • A Fast Face Detection Method via Convolutional Neural Network
      • Beyond Trade-off: Accelerate FCN-based Face Detector with Higher Accuracy
      • Real-Time Rotation-Invariant Face Detection with Progressive Calibration Networks
      • SFace: An Efficient Network for Face Detection in Large Scale Variations
      • Survey of Face Detection on Low-quality Images
      • Anchor Cascade for Efficient Face Detection
      • Adversarial Attacks on Face Detectors using Neural Net based Constrained Optimization
      • Selective Refinement Network for High Performance Face Detection
      • DSFD: Dual Shot Face Detector
      • Learning Better Features for Face Detection with Feature Fusion and Segmentation Supervision
      • FA-RPN: Floating Region Proposals for Face Detection
      • Robust and High Performance Face Detector
      • DAFE-FD: Density Aware Feature Enrichment for Face Detection
      • Improved Selective Refinement Network for Face Detection
      • Revisiting a single-stage method for face detection
    • Detect Small Faces
      • Finding Tiny Faces
      • Detecting and counting tiny faces
      • Seeing Small Faces from Robust Anchor’s Perspective
      • Face-MagNet: Magnifying Feature Maps to Detect Small Faces
      • Robust Face Detection via Learning Small Faces on Hard Images
      • SFA: Small Faces Attention Face Detector
    • Person Head Detection
      • Context-aware CNNs for person head detection
      • Detecting Heads using Feature Refine Net and Cascaded Multi-scale Architecture
      • A Comparison of CNN-based Face and Head Detectors for Real-Time Video Surveillance Applications
      • FCHD: A fast and accurate head detector
    • Pedestrian Detection / People Detection
      • Pedestrian Detection aided by Deep Learning Semantic Tasks
      • Deep Learning Strong Parts for Pedestrian Detection
      • Taking a Deeper Look at Pedestrians
      • Convolutional Channel Features
      • End-to-end people detection in crowded scenes
      • Learning Complexity-Aware Cascades for Deep Pedestrian Detection
      • Deep convolutional neural networks for pedestrian detection
      • Scale-aware Fast R-CNN for Pedestrian Detection
      • New algorithm improves speed and accuracy of pedestrian detection
      • Pushing the Limits of Deep CNNs for Pedestrian Detection
      • A Real-Time Deep Learning Pedestrian Detector for Robot Navigation
      • A Real-Time Pedestrian Detector using Deep Learning for Human-Aware Navigation
      • Is Faster R-CNN Doing Well for Pedestrian Detection?
      • Unsupervised Deep Domain Adaptation for Pedestrian Detection
      • Reduced Memory Region Based Deep Convolutional Neural Network Detection
      • Fused DNN: A deep neural network fusion approach to fast and robust pedestrian detection
      • Detecting People in Artwork with CNNs
      • Multispectral Deep Neural Networks for Pedestrian Detection
      • Box-level Segmentation Supervised Deep Neural Networks for Accurate and Real-time Multispectral Pedestrian Detection
      • Deep Multi-camera People Detection
      • Expecting the Unexpected: Training Detectors for Unusual Pedestrians with Adversarial Imposters
      • What Can Help Pedestrian Detection?
      • Illuminating Pedestrians via Simultaneous Detection & Segmentation
      • Rotational Rectification Network for Robust Pedestrian Detection
      • STD-PD: Generating Synthetic Training Data for Pedestrian Detection in Unannotated Videos
      • Too Far to See? Not Really! — Pedestrian Detection with Scale-aware Localization Policy
      • Repulsion Loss: Detecting Pedestrians in a Crowd
      • Aggregated Channels Network for Real-Time Pedestrian Detection
      • Illumination-aware Faster R-CNN for Robust Multispectral Pedestrian Detection
      • Exploring Multi-Branch and High-Level Semantic Networks for Improving Pedestrian Detection
      • Pedestrian-Synthesis-GAN: Generating Pedestrian Data in Real Scene and Beyond
      • PCN: Part and Context Information for Pedestrian Detection with CNNs
      • Small-scale Pedestrian Detection Based on Somatic Topology Localization and Temporal Feature Aggregation
      • Occlusion-aware R-CNN: Detecting Pedestrians in a Crowd
      • Multispectral Pedestrian Detection via Simultaneous Detection and Segmentation
      • Pedestrian Detection with Autoregressive Network Phases
      • The Cross-Modality Disparity Problem in Multispectral Pedestrian Detection
    • Vehicle Detection
      • DAVE: A Unified Framework for Fast Vehicle Detection and Annotation
      • Evolving Boxes for fast Vehicle Detection
      • Fine-Grained Car Detection for Visual Census Estimation
      • SINet: A Scale-insensitive Convolutional Neural Network for Fast Vehicle Detection
      • Label and Sample: Efficient Training of Vehicle Object Detector from Sparsely Labeled Data
      • Domain Randomization for Scene-Specific Car Detection and Pose Estimation
      • ShuffleDet: Real-Time Vehicle Detection Network in On-board Embedded UAV Imagery
    • Traffic-Sign Detection
      • Traffic-Sign Detection and Classification in the Wild
      • Evaluating State-of-the-art Object Detector on Challenging Traffic Light Data
      • Detecting Small Signs from Large Images
      • Localized Traffic Sign Detection with Multi-scale Deconvolution Networks
      • Detecting Traffic Lights by Single Shot Detection
      • A Hierarchical Deep Architecture and Mini-Batch Selection Method For Joint Traffic Sign and Light Detection
    • Skeleton Detection
      • Object Skeleton Extraction in Natural Images by Fusing Scale-associated Deep Side Outputs
      • DeepSkeleton: Learning Multi-task Scale-associated Deep Side Outputs for Object Skeleton Extraction in Natural Images
      • SRN: Side-output Residual Network for Object Symmetry Detection in the Wild
      • Hi-Fi: Hierarchical Feature Integration for Skeleton Detection
    • Fruit Detection
      • Deep Fruit Detection in Orchards
      • Image Segmentation for Fruit Detection and Yield Estimation in Apple Orchards
    • Shadow Detection
      • Fast Shadow Detection from a Single Image Using a Patched Convolutional Neural Network
      • A+D-Net: Shadow Detection with Adversarial Shadow Attenuation
      • Stacked Conditional Generative Adversarial Networks for Jointly Learning Shadow Detection and Shadow Removal
      • Direction-aware Spatial Context Features for Shadow Detection
      • Direction-aware Spatial Context Features for Shadow Detection and Removal
    • Others Detection
      • Deep Deformation Network for Object Landmark Localization
      • Fashion Landmark Detection in the Wild
      • Deep Learning for Fast and Accurate Fashion Item Detection
      • OSMDeepOD - OSM and Deep Learning based Object Detection from Aerial Imagery (formerly known as “OSM-Crosswalk-Detection”)
      • Selfie Detection by Synergy-Constraint Based Convolutional Neural Network
      • Associative Embedding:End-to-End Learning for Joint Detection and Grouping
      • Deep Cuboid Detection: Beyond 2D Bounding Boxes
      • Automatic Model Based Dataset Generation for Fast and Accurate Crop and Weeds Detection
      • Deep Learning Logo Detection with Data Expansion by Synthesising Context
      • Scalable Deep Learning Logo Detection
      • Pixel-wise Ear Detection with Convolutional Encoder-Decoder Networks
      • Automatic Handgun Detection Alarm in Videos Using Deep Learning
      • Objects as context for part detection
      • Using Deep Networks for Drone Detection
      • Cut, Paste and Learn: Surprisingly Easy Synthesis for Instance Detection
      • Target Driven Instance Detection
      • DeepVoting: An Explainable Framework for Semantic Part Detection under Partial Occlusion
      • VPGNet: Vanishing Point Guided Network for Lane and Road Marking Detection and Recognition
      • Grab, Pay and Eat: Semantic Food Detection for Smart Restaurants
      • ReMotENet: Efficient Relevant Motion Event Detection for Large-scale Home Surveillance Videos
      • Deep Learning Object Detection Methods for Ecological Camera Trap Data
      • EL-GAN: Embedding Loss Driven Generative Adversarial Networks for Lane Detection
      • Towards End-to-End Lane Detection: an Instance Segmentation Approach
      • iCAN: Instance-Centric Attention Network for Human-Object Interaction Detection
      • Densely Supervised Grasp Detector (DSGD)
    • Object Proposal
      • DeepProposal: Hunting Objects by Cascading Deep Convolutional Layers
      • Scale-aware Pixel-wise Object Proposal Networks
      • Attend Refine Repeat: Active Box Proposal Generation via In-Out Localization
      • Learning to Segment Object Proposals via Recursive Neural Networks
      • Learning Detection with Diverse Proposals
      • ScaleNet: Guiding Object Proposal Generation in Supermarkets and Beyond
      • Improving Small Object Proposals for Company Logo Detection
      • Open Logo Detection Challenge
      • AttentionMask: Attentive, Efficient Object Proposal Generation Focusing on Small Objects
    • Localization
      • Beyond Bounding Boxes: Precise Localization of Objects in Images
      • Weakly Supervised Object Localization with Multi-fold Multiple Instance Learning
      • Weakly Supervised Object Localization Using Size Estimates
      • Active Object Localization with Deep Reinforcement Learning
      • Localizing objects using referring expressions
      • LocNet: Improving Localization Accuracy for Object Detection
      • Learning Deep Features for Discriminative Localization
      • ContextLocNet: Context-Aware Deep Network Models for Weakly Supervised Localization
      • Ensemble of Part Detectors for Simultaneous Classification and Localization
      • STNet: Selective Tuning of Convolutional Networks for Object Localization
      • Soft Proposal Networks for Weakly Supervised Object Localization
      • Fine-grained Discriminative Localization via Saliency-guided Faster R-CNN
    • Tutorials / Talks
      • Convolutional Feature Maps: Elements of efficient (and accurate) CNN-based object detection
      • Towards Good Practices for Recognition & Detection
      • Work in progress: Improving object detection and instance segmentation for small objects
      • Object Detection with Deep Learning: A Review
    • Projects
      • Detectron
      • TensorBox: a simple framework for training neural networks to detect objects in images
      • Object detection in torch: Implementation of some object detection frameworks in torch
      • Using DIGITS to train an Object Detection network
      • FCN-MultiBox Detector
      • KittiBox: A car detection model implemented in Tensorflow.
      • Deformable Convolutional Networks + MST + Soft-NMS
      • How to Build a Real-time Hand-Detector using Neural Networks (SSD) on Tensorflow
      • Metrics for object detection
      • MobileNetv2-SSDLite
    • Leaderboard
      • Detection Results: VOC2012
    • Tools
      • BeaverDam: Video annotation tool for deep learning training labels
    • Blogs
      • Convolutional Neural Networks for Object Detection
      • Introducing automatic object detection to visual search (Pinterest)
      • Deep Learning for Object Detection with DIGITS
      • Analyzing The Papers Behind Facebook’s Computer Vision Approach
      • Easily Create High Quality Object Detectors with Deep Learning
      • How to Train a Deep-Learned Object Detection Model in the Microsoft Cognitive Toolkit
      • Object Detection in Satellite Imagery, a Low Overhead Approach
      • You Only Look Twice — Multi-Scale Object Detection in Satellite Imagery With Convolutional Neural Networks
      • Faster R-CNN Pedestrian and Car Detection
      • Small U-Net for vehicle detection
      • Region of interest pooling explained
      • Supercharge your Computer Vision models with the TensorFlow Object Detection API
      • Understanding SSD MultiBox — Real-Time Object Detection In Deep Learning
      • One-shot object detection
      • An overview of object detection: one-stage methods
    • deep learning object detection

Method backbone test size VOC2007 VOC2010 VOC2012 ILSVRC 2013 MSCOCO 2015 Speed
OverFeat 24.3%
R-CNN AlexNet 58.5% 53.7% 53.3% 31.4%
R-CNN VGG17 66.0%
SPP_net ZF-5 54.2% 31.84%
DeepID-Net 64.1% 50.3%
NoC 73.3% 68.8%
Fast-RCNN VGG16 70.0% 68.8% 68.4% 19.7%(@[0.5-0.95]), 35.9%(@0.5)
MR-CNN 78.2% 73.9%
Faster-RCNN VGG16 78.8% 75.9% 21.9%(@[0.5-0.95]), 42.7%(@0.5) 198ms
Faster-RCNN ResNet101 85.6% 83.8% 37.4%(@[0.5-0.95]), 59.0%(@0.5)
YOLO 63.4% 57.9% 45 fps
YOLO VGG-16 66.4% 21 fps
YOLOv2 448x448 78.6% 73.4% 21.6%(@[0.5-0.95]), 44.0%(@0.5) 40 fps
SSD VGG16 300x300 77.2% 75.8% 25.1%(@[0.5-0.95]), 43.1%(@0.5) 46 fps
SSD VGG16 512x512 79.8% 78.5% 28.8%(@[0.5-0.95]), 48.5%(@0.5) 19 fps
SSD ResNet101 300x300 28.0%(@[0.5-0.95]) 16 fps
SSD ResNet101 512x512 31.2%(@[0.5-0.95]) 8 fps
DSSD ResNet101 300x300 28.0%(@[0.5-0.95]) 8 fps
DSSD ResNet101 500x500 33.2%(@[0.5-0.95]) 6 fps
ION 79.2% 76.4%
CRAFT 75.7% 71.3% 48.5%
OHEM 78.9% 76.3% 25.5%(@[0.5-0.95]), 45.9%(@0.5)
R-FCN ResNet50 77.4% 0.12sec(K40), 0.09sec(TitianX)
R-FCN ResNet101 79.5% 0.17sec(K40), 0.12sec(TitianX)
R-FCN(ms train) ResNet101 83.6% 82.0% 31.5%(@[0.5-0.95]), 53.2%(@0.5)
PVANet 9.0 84.9% 84.2% 750ms(CPU), 46ms(TitianX)
RetinaNet ResNet101-FPN
Light-Head R-CNN Xception* 800/1200 31.5%@[0.5:0.95] 95 fps
Light-Head R-CNN Xception* 700/1100 30.7%@[0.5:0.95] 102 fps
STDN 80.9 (07+12)
RefineDet 83.8 (07+12) 83.5 (07++12) 41.8
SNIP 45.7
Relation-Network 32.5
Cascade R-CNN 42.8
MLKP 80.6 (07+12) 77.2 (07++12) 28.6
Fitness-NMS 41.8
RFBNet 82.2 (07+12)
CornerNet 42.1
PFPNet 84.1 (07+12) 83.7 (07++12) 39.4
Pelee 70.9 (07+12)
HKRM 78.8 (07+12) 37.8
M2Det 44.2
SIN 76.0 (07+12) 73.1 (07++12) 23.2

Papers



损失函数

[CVPR2019] Generalized Intersection over Union: A Metric and A Loss for Bounding Box Regression

  • arxiv: https://arxiv.org/abs/1902.09630

Deep Neural Networks for Object Detection

  • paper: http://papers.nips.cc/paper/5207-deep-neural-networks-for-object-detection.pdf

OverFeat: Integrated Recognition, Localization and Detection using Convolutional Networks

  • arxiv: http://arxiv.org/abs/1312.6229
  • github: https://github.com/sermanet/OverFeat
  • code: http://cilvr.nyu.edu/doku.php?id=software:overfeat:start

R-CNN

Rich feature hierarchies for accurate object detection and semantic segmentation

  • intro: R-CNN
  • arxiv: http://arxiv.org/abs/1311.2524
  • supp: http://people.eecs.berkeley.edu/~rbg/papers/r-cnn-cvpr-supp.pdf
  • slides: http://www.image-net.org/challenges/LSVRC/2013/slides/r-cnn-ilsvrc2013-workshop.pdf
  • slides: http://www.cs.berkeley.edu/~rbg/slides/rcnn-cvpr14-slides.pdf
  • github: https://github.com/rbgirshick/rcnn
  • notes: http://zhangliliang.com/2014/07/23/paper-note-rcnn/
  • caffe-pr(“Make R-CNN the Caffe detection example”): https://github.com/BVLC/caffe/pull/482

Fast R-CNN

Fast R-CNN

  • arxiv: http://arxiv.org/abs/1504.08083
  • slides: http://tutorial.caffe.berkeleyvision.org/caffe-cvpr15-detection.pdf
  • github: https://github.com/rbgirshick/fast-rcnn
  • github(COCO-branch): https://github.com/rbgirshick/fast-rcnn/tree/coco
  • webcam demo: https://github.com/rbgirshick/fast-rcnn/pull/29
  • notes: http://zhangliliang.com/2015/05/17/paper-note-fast-rcnn/
  • notes: http://blog.csdn.net/linj_m/article/details/48930179
  • github(“Fast R-CNN in MXNet”): https://github.com/precedenceguo/mx-rcnn
  • github: https://github.com/mahyarnajibi/fast-rcnn-torch
  • github: https://github.com/apple2373/chainer-simple-fast-rnn
  • github: https://github.com/zplizzi/tensorflow-fast-rcnn

A-Fast-RCNN: Hard Positive Generation via Adversary for Object Detection

  • intro: CVPR 2017
  • arxiv: https://arxiv.org/abs/1704.03414
  • paper: http://abhinavsh.info/papers/pdfs/adversarial_object_detection.pdf
  • github(Caffe): https://github.com/xiaolonw/adversarial-frcnn

Faster R-CNN

Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks

  • intro: NIPS 2015
  • arxiv: http://arxiv.org/abs/1506.01497
  • gitxiv: http://www.gitxiv.com/posts/8pfpcvefDYn2gSgXk/faster-r-cnn-towards-real-time-object-detection-with-region
  • slides: http://web.cs.hacettepe.edu.tr/~aykut/classes/spring2016/bil722/slides/w05-FasterR-CNN.pdf
  • github(official, Matlab): https://github.com/ShaoqingRen/faster_rcnn
  • github: https://github.com/rbgirshick/py-faster-rcnn
  • github(MXNet): https://github.com/msracver/Deformable-ConvNets/tree/master/faster_rcnn
  • github: https://github.com//jwyang/faster-rcnn.pytorch
  • github: https://github.com/mitmul/chainer-faster-rcnn
  • github: https://github.com/andreaskoepf/faster-rcnn.torch
  • github: https://github.com/ruotianluo/Faster-RCNN-Densecap-torch
  • github: https://github.com/smallcorgi/Faster-RCNN_TF
  • github: https://github.com/CharlesShang/TFFRCNN
  • github(C++ demo): https://github.com/YihangLou/FasterRCNN-Encapsulation-Cplusplus
  • github: https://github.com/yhenon/keras-frcnn
  • github: https://github.com/Eniac-Xie/faster-rcnn-resnet
  • github(C++): https://github.com/D-X-Y/caffe-faster-rcnn/tree/dev

R-CNN minus R

  • intro: BMVC 2015
  • arxiv: http://arxiv.org/abs/1506.06981

Faster R-CNN in MXNet with distributed implementation and data parallelization

  • github: https://github.com/dmlc/mxnet/tree/master/example/rcnn

Contextual Priming and Feedback for Faster R-CNN

  • intro: ECCV 2016. Carnegie Mellon University
  • paper: http://abhinavsh.info/context_priming_feedback.pdf
  • poster: http://www.eccv2016.org/files/posters/P-1A-20.pdf

An Implementation of Faster RCNN with Study for Region Sampling

  • intro: Technical Report, 3 pages. CMU
  • arxiv: https://arxiv.org/abs/1702.02138
  • github: https://github.com/endernewton/tf-faster-rcnn

Interpretable R-CNN

  • intro: North Carolina State University & Alibaba
  • keywords: AND-OR Graph (AOG)
  • arxiv: https://arxiv.org/abs/1711.05226

[AAAI2019]Object Detection based on Region Decomposition and Assembly

  • intro: AAAI2019,区域分解组装
  • arxiv: https://arxiv.org/abs/1901.08225
  • translate: https://zhuanlan.zhihu.com/p/58951221 论文翻译

Light-Head R-CNN

Light-Head R-CNN: In Defense of Two-Stage Object Detector

  • intro: Tsinghua University & Megvii Inc
  • arxiv: https://arxiv.org/abs/1711.07264
  • github(official, Tensorflow): https://github.com/zengarden/light_head_rcnn
  • github: https://github.com/terrychenism/Deformable-ConvNets/blob/master/rfcn/symbols/resnet_v1_101_rfcn_light.py#L784

##Cascade R-CNN

Cascade R-CNN: Delving into High Quality Object Detection

  • intro: CVPR 2018. UC San Diego
  • arxiv: https://arxiv.org/abs/1712.00726
  • github(Caffe, official): https://github.com/zhaoweicai/cascade-rcnn

MultiBox

Scalable Object Detection using Deep Neural Networks

  • intro: first MultiBox. Train a CNN to predict Region of Interest.
  • arxiv: http://arxiv.org/abs/1312.2249
  • github: https://github.com/google/multibox
  • blog: https://research.googleblog.com/2014/12/high-quality-object-detection-at-scale.html

Scalable, High-Quality Object Detection

  • intro: second MultiBox
  • arxiv: http://arxiv.org/abs/1412.1441
  • github: https://github.com/google/multibox

SPP-Net

Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition

  • intro: ECCV 2014 / TPAMI 2015
  • arxiv: http://arxiv.org/abs/1406.4729
  • github: https://github.com/ShaoqingRen/SPP_net
  • notes: http://zhangliliang.com/2014/09/13/paper-note-sppnet/

DeepID-Net: Deformable Deep Convolutional Neural Networks for Object Detection

  • intro: PAMI 2016
  • intro: an extension of R-CNN. box pre-training, cascade on region proposals, deformation layers and context representations
  • project page: http://www.ee.cuhk.edu.hk/˜wlouyang/projects/imagenetDeepId/index.html
  • arxiv: http://arxiv.org/abs/1412.5661

Object Detectors Emerge in Deep Scene CNNs

  • intro: ICLR 2015
  • arxiv: http://arxiv.org/abs/1412.6856
  • paper: https://www.robots.ox.ac.uk/~vgg/rg/papers/zhou_iclr15.pdf
  • paper: https://people.csail.mit.edu/khosla/papers/iclr2015_zhou.pdf
  • slides: http://places.csail.mit.edu/slide_iclr2015.pdf

segDeepM: Exploiting Segmentation and Context in Deep Neural Networks for Object Detection

  • intro: CVPR 2015
  • project(code+data): https://www.cs.toronto.edu/~yukun/segdeepm.html
  • arxiv: https://arxiv.org/abs/1502.04275
  • github: https://github.com/YknZhu/segDeepM

Object Detection Networks on Convolutional Feature Maps

  • intro: TPAMI 2015
  • keywords: NoC
  • arxiv: http://arxiv.org/abs/1504.06066

Improving Object Detection with Deep Convolutional Networks via Bayesian Optimization and Structured Prediction

  • arxiv: http://arxiv.org/abs/1504.03293
  • slides: http://www.ytzhang.net/files/publications/2015-cvpr-det-slides.pdf
  • github: https://github.com/YutingZhang/fgs-obj

DeepBox: Learning Objectness with Convolutional Networks

  • keywords: DeepBox
  • arxiv: http://arxiv.org/abs/1505.02146
  • github: https://github.com/weichengkuo/DeepBox

MR-CNN

Object detection via a multi-region & semantic segmentation-aware CNN model

  • intro: ICCV 2015. MR-CNN
  • arxiv: http://arxiv.org/abs/1505.01749
  • github: https://github.com/gidariss/mrcnn-object-detection
  • notes: http://zhangliliang.com/2015/05/17/paper-note-ms-cnn/
  • notes: http://blog.cvmarcher.com/posts/2015/05/17/multi-region-semantic-segmentation-aware-cnn/

YOLO

You Only Look Once: Unified, Real-Time Object Detection

这里写图片描述

  • arxiv: http://arxiv.org/abs/1506.02640
  • code: http://pjreddie.com/darknet/yolo/
  • github: https://github.com/pjreddie/darknet
  • blog: https://pjreddie.com/publications/yolo/
  • slides: https://docs.google.com/presentation/d/1aeRvtKG21KHdD5lg6Hgyhx5rPq_ZOsGjG5rJ1HP7BbA/pub?start=false&loop=false&delayms=3000&slide=id.p
  • reddit: https://www.reddit.com/r/MachineLearning/comments/3a3m0o/realtime_object_detection_with_yolo/
  • github: https://github.com/gliese581gg/YOLO_tensorflow
  • github: https://github.com/xingwangsfu/caffe-yolo
  • github: https://github.com/frankzhangrui/Darknet-Yolo
  • github: https://github.com/BriSkyHekun/py-darknet-yolo
  • github: https://github.com/tommy-qichang/yolo.torch
  • github: https://github.com/frischzenger/yolo-windows
  • github: https://github.com/AlexeyAB/yolo-windows
  • github: https://github.com/nilboy/tensorflow-yolo

darkflow - translate darknet to tensorflow. Load trained weights, retrain/fine-tune them using tensorflow, export constant graph def to C++

  • blog: https://thtrieu.github.io/notes/yolo-tensorflow-graph-buffer-cpp
  • github: https://github.com/thtrieu/darkflow

Start Training YOLO with Our Own Data

这里写图片描述

  • intro: train with customized data and class numbers/labels. Linux / Windows version for darknet.
  • blog: http://guanghan.info/blog/en/my-works/train-yolo/
  • github: https://github.com/Guanghan/darknet

YOLO: Core ML versus MPSNNGraph

  • intro: Tiny YOLO for iOS implemented using CoreML but also using the new MPS graph API.
  • blog: http://machinethink.net/blog/yolo-coreml-versus-mps-graph/
  • github: https://github.com/hollance/YOLO-CoreML-MPSNNGraph

TensorFlow YOLO object detection on Android

  • intro: Real-time object detection on Android using the YOLO network with TensorFlow
  • github: https://github.com/natanielruiz/android-yolo

Computer Vision in iOS – Object Detection

  • blog: https://sriraghu.com/2017/07/12/computer-vision-in-ios-object-detection/
  • github:https://github.com/r4ghu/iOS-CoreML-Yolo

YOLOv2

YOLO9000: Better, Faster, Stronger

  • arxiv: https://arxiv.org/abs/1612.08242
  • code: http://pjreddie.com/yolo9000/
  • github(Chainer): https://github.com/leetenki/YOLOv2
  • github(Keras): https://github.com/allanzelener/YAD2K
  • github(PyTorch): https://github.com/longcw/yolo2-pytorch
  • github(Tensorflow): https://github.com/hizhangp/yolo_tensorflow
  • github(Windows): https://github.com/AlexeyAB/darknet
  • github: https://github.com/choasUp/caffe-yolo9000
  • github: https://github.com/philipperemy/yolo-9000

darknet_scripts

  • intro: Auxilary scripts to work with (YOLO) darknet deep learning famework. AKA -> How to generate YOLO anchors?
  • github: https://github.com/Jumabek/darknet_scripts

Yolo_mark: GUI for marking bounded boxes of objects in images for training Yolo v2

  • github: https://github.com/AlexeyAB/Yolo_mark

LightNet: Bringing pjreddie’s DarkNet out of the shadows

  • github: https://github.com//explosion/lightnet

YOLO v2 Bounding Box Tool

  • intro: Bounding box labeler tool to generate the training data in the format YOLO v2 requires.
  • github: https://github.com/Cartucho/yolo-boundingbox-labeler-GUI

YOLOv3

YOLOv3: An Incremental Improvement

  • project page: https://pjreddie.com/darknet/yolo/
  • arxiv: https://arxiv.org/abs/1804.02767
  • github: https://github.com/DeNA/PyTorch_YOLOv3
  • github: https://github.com/eriklindernoren/PyTorch-YOLOv3

YOLO-LITE: A Real-Time Object Detection Algorithm Optimized for Non-GPU Computers

  • arxiv:https://arxiv.org/abs/1811.05588

AttentionNet: Aggregating Weak Directions for Accurate Object Detection

  • intro: ICCV 2015
  • intro: state-of-the-art performance of 65% (AP) on PASCAL VOC 2007/2012 human detection task
  • arxiv: http://arxiv.org/abs/1506.07704
  • slides: https://www.robots.ox.ac.uk/~vgg/rg/slides/AttentionNet.pdf
  • slides: http://image-net.org/challenges/talks/lunit-kaist-slide.pdf

DenseBox

DenseBox: Unifying Landmark Localization with End to End Object Detection

  • arxiv: http://arxiv.org/abs/1509.04874
  • demo: http://pan.baidu.com/s/1mgoWWsS
  • KITTI result: http://www.cvlibs.net/datasets/kitti/eval_object.php

SSD

SSD: Single Shot MultiBox Detector

这里写图片描述

  • intro: ECCV 2016 Oral
  • arxiv: http://arxiv.org/abs/1512.02325
  • paper: http://www.cs.unc.edu/~wliu/papers/ssd.pdf
  • slides: http://www.cs.unc.edu/~wliu/papers/ssd_eccv2016_slide.pdf
  • github(Official): https://github.com/weiliu89/caffe/tree/ssd
  • video: http://weibo.com/p/2304447a2326da963254c963c97fb05dd3a973
  • github: https://github.com/zhreshold/mxnet-ssd
  • github: https://github.com/zhreshold/mxnet-ssd.cpp
  • github: https://github.com/rykov8/ssd_keras
  • github: https://github.com/balancap/SSD-Tensorflow
  • github: https://github.com/amdegroot/ssd.pytorch
  • github(Caffe): https://github.com/chuanqi305/MobileNet-SSD
    What’s the diffience in performance between this new code you pushed and the previous code? #327
    https://github.com/weiliu89/caffe/issues/327

DSSD

DSSD : Deconvolutional Single Shot Detector

  • intro: UNC Chapel Hill & Amazon Inc
  • arxiv: https://arxiv.org/abs/1701.06659
  • github: https://github.com/chengyangfu/caffe/tree/dssd
  • github: https://github.com/MTCloudVision/mxnet-dssd
  • demo: http://120.52.72.53/www.cs.unc.edu/c3pr90ntc0td/~cyfu/dssd_lalaland.mp4

Enhancement of SSD by concatenating feature maps for object detection

  • intro: rainbow SSD (R-SSD)
  • arxiv: https://arxiv.org/abs/1705.09587

Context-aware Single-Shot Detector

  • keywords: CSSD, DiCSSD, DeCSSD, effective receptive fields (ERFs), theoretical receptive fields (TRFs)
  • arxiv: https://arxiv.org/abs/1707.08682

Feature-Fused SSD: Fast Detection for Small Objects

https://arxiv.org/abs/1709.05054


FSSD

FSSD: Feature Fusion Single Shot Multibox Detector

https://arxiv.org/abs/1712.00960

Weaving Multi-scale Context for Single Shot Detector

  • intro: WeaveNet
  • keywords: fuse multi-scale information
  • arxiv: https://arxiv.org/abs/1712.03149

ESSD

Extend the shallow part of Single Shot MultiBox Detector via Convolutional Neural Network

  • arxiv: https://arxiv.org/abs/1801.05918

Tiny SSD: A Tiny Single-shot Detection Deep Convolutional Neural Network for Real-time Embedded Object Detection

  • arxiv: https://arxiv.org/abs/1802.06488

MDSSD: Multi-scale Deconvolutional Single Shot Detector for small objects

  • intro: Zhengzhou University
  • arxiv: https://arxiv.org/abs/1805.07009

Inside-Outside Net (ION)

Inside-Outside Net: Detecting Objects in Context with Skip Pooling and Recurrent Neural Networks

  • intro: “0.8s per image on a Titan X GPU (excluding proposal generation) without two-stage bounding-box regression and 1.15s per image with it”.
  • arxiv: http://arxiv.org/abs/1512.04143
  • slides: http://www.seanbell.ca/tmp/ion-coco-talk-bell2015.pdf
  • coco-leaderboard: http://mscoco.org/dataset/#detections-leaderboard

Adaptive Object Detection Using Adjacency and Zoom Prediction

  • intro: CVPR 2016. AZ-Net
  • arxiv: http://arxiv.org/abs/1512.07711
  • github: https://github.com/luyongxi/az-net
  • youtube: https://www.youtube.com/watch?v=YmFtuNwxaNM

G-CNN: an Iterative Grid Based Object Detector

  • arxiv: http://arxiv.org/abs/1512.07729

Factors in Finetuning Deep Model for object detection

Factors in Finetuning Deep Model for Object Detection with Long-tail Distribution

  • intro: CVPR 2016.rank 3rd for provided data and 2nd for external data on ILSVRC 2015 object detection
  • project page: http://www.ee.cuhk.edu.hk/~wlouyang/projects/ImageNetFactors/CVPR16.html
  • arxiv: http://arxiv.org/abs/1601.05150

We don’t need no bounding-boxes: Training object class detectors using only human verification

  • arxiv: http://arxiv.org/abs/1602.08405

HyperNet: Towards Accurate Region Proposal Generation and Joint Object Detection

  • arxiv: http://arxiv.org/abs/1604.00600

A MultiPath Network for Object Detection

  • intro: BMVC 2016. Facebook AI Research (FAIR)
  • arxiv: http://arxiv.org/abs/1604.02135
  • github: https://github.com/facebookresearch/multipathnet

CRAFT

CRAFT Objects from Images

  • intro: CVPR 2016. Cascade Region-proposal-network And FasT-rcnn. an extension of Faster R-CNN
  • project page: http://byangderek.github.io/projects/craft.html
  • arxiv: https://arxiv.org/abs/1604.03239
  • paper: http://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Yang_CRAFT_Objects_From_CVPR_2016_paper.pdf
  • github: https://github.com/byangderek/CRAFT

OHEM

Training Region-based Object Detectors with Online Hard Example Mining

  • intro: CVPR 2016 Oral. Online hard example mining (OHEM)
  • arxiv: http://arxiv.org/abs/1604.03540
  • paper: http://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Shrivastava_Training_Region-Based_Object_CVPR_2016_paper.pdf
  • github(Official): https://github.com/abhi2610/ohem
  • author page: http://abhinav-shrivastava.info/

S-OHEM: Stratified Online Hard Example Mining for Object Detection

  • arxiv: https://arxiv.org/abs/1705.02233

Exploit All the Layers: Fast and Accurate CNN Object Detector with Scale Dependent Pooling and Cascaded Rejection Classifiers

  • intro: CVPR 2016
  • keywords: scale-dependent pooling (SDP), cascaded rejection classifiers (CRC)
  • paper: http://www-personal.umich.edu/~wgchoi/SDP-CRC_camready.pdf

R-FCN

R-FCN: Object Detection via Region-based Fully Convolutional Networks

arxiv: http://arxiv.org/abs/1605.06409
github: https://github.com/daijifeng001/R-FCN
github(MXNet): https://github.com/msracver/Deformable-ConvNets/tree/master/rfcn
github: https://github.com/Orpine/py-R-FCN
github: https://github.com/PureDiors/pytorch_RFCN
github: https://github.com/bharatsingh430/py-R-FCN-multiGPU
github: https://github.com/xdever/RFCN-tensorflow

R-FCN-3000 at 30fps: Decoupling Detection and Classification

  • arxiv: https://arxiv.org/abs/1712.01802

Recycle deep features for better object detection

  • arxiv: http://arxiv.org/abs/1607.05066

MS-CNN

A Unified Multi-scale Deep Convolutional Neural Network for Fast Object Detection

  • intro: ECCV 2016
  • intro: 640×480: 15 fps, 960×720: 8 fps
  • arxiv: http://arxiv.org/abs/1607.07155
  • github: https://github.com/zhaoweicai/mscnn
  • poster: http://www.eccv2016.org/files/posters/P-2B-38.pdf

Multi-stage Object Detection with Group Recursive Learning

  • intro: VOC2007: 78.6%, VOC2012: 74.9%
  • arxiv: http://arxiv.org/abs/1608.05159

Subcategory-aware Convolutional Neural Networks for Object Proposals and Detection

  • intro: WACV 2017. SubCNN
  • arxiv: http://arxiv.org/abs/1604.04693
  • github: https://github.com/tanshen/SubCNN

PVANET

PVANet: Lightweight Deep Neural Networks for Real-time Object Detection

  • intro: Presented at NIPS 2016 Workshop on Efficient Methods for Deep Neural Networks (EMDNN). Continuation of arXiv:1608.08021
  • arxiv: https://arxiv.org/abs/1611.08588
  • github: https://github.com/sanghoon/pva-faster-rcnn
  • leaderboard(PVANet 9.0): http://host.robots.ox.ac.uk:8080/leaderboard/displaylb.php?challengeid=11&compid=4

GBD-Net

Gated Bi-directional CNN for Object Detection

  • intro: The Chinese University of Hong Kong & Sensetime Group Limited
  • paper: http://link.springer.com/chapter/10.1007/978-3-319-46478-7_22
  • mirror: https://pan.baidu.com/s/1dFohO7v

Crafting GBD-Net for Object Detection

  • intro: winner of the ImageNet object detection challenge of 2016. CUImage and CUVideo
  • intro: gated bi-directional CNN (GBD-Net)
  • arxiv: https://arxiv.org/abs/1610.02579
  • github: https://github.com/craftGBD/craftGBD

StuffNet: Using ‘Stuff’ to Improve Object Detection

  • arxiv: https://arxiv.org/abs/1610.05861

Generalized Haar Filter based Deep Networks for Real-Time Object Detection in Traffic Scene

  • arxiv: https://arxiv.org/abs/1610.09609

Hierarchical Object Detection with Deep Reinforcement Learning

  • intro: Deep Reinforcement Learning Workshop (NIPS 2016)
  • project page: https://imatge-upc.github.io/detection-2016-nipsws/
  • arxiv: https://arxiv.org/abs/1611.03718
  • slides: http://www.slideshare.net/xavigiro/hierarchical-object-detection-with-deep-reinforcement-learning
  • github: https://github.com/imatge-upc/detection-2016-nipsws
  • blog: http://jorditorres.org/nips/

Learning to detect and localize many objects from few examples

  • arxiv: https://arxiv.org/abs/1611.05664

Speed/accuracy trade-offs for modern convolutional object detectors

  • intro: CVPR 2017. Google Research
  • arxiv: https://arxiv.org/abs/1611.10012

SqueezeDet: Unified, Small, Low Power Fully Convolutional Neural Networks for Real-Time Object Detection for Autonomous Driving

  • arxiv: https://arxiv.org/abs/1612.01051
  • github: https://github.com/BichenWuUCB/squeezeDet
  • github: https://github.com/fregu856/2D_detection

Feature Pyramid Network (FPN)

Feature Pyramid Networks for Object Detection

  • intro: Facebook AI Research
  • arxiv: https://arxiv.org/abs/1612.03144

Action-Driven Object Detection with Top-Down Visual Attentions

  • arxiv: https://arxiv.org/abs/1612.06704

Beyond Skip Connections: Top-Down Modulation for Object Detection

  • intro: CMU & UC Berkeley & Google Research
  • arxiv: https://arxiv.org/abs/1612.06851

Wide-Residual-Inception Networks for Real-time Object Detection

  • intro: Inha University
  • arxiv: https://arxiv.org/abs/1702.01243

Attentional Network for Visual Object Detection

  • intro: University of Maryland & Mitsubishi Electric Research Laboratories
  • arxiv: https://arxiv.org/abs/1702.01478

Learning Chained Deep Features and Classifiers for Cascade in Object Detection

  • keykwords: CC-Net
  • intro: chained cascade network (CC-Net). 81.1% mAP on PASCAL VOC 2007
  • arxiv: https://arxiv.org/abs/1702.07054

DeNet: Scalable Real-time Object Detection with Directed Sparse Sampling

  • intro: ICCV 2017 (poster)
  • arxiv: https://arxiv.org/abs/1703.10295

Discriminative Bimodal Networks for Visual Localization and Detection with Natural Language Queries

  • intro: CVPR 2017
  • arxiv: https://arxiv.org/abs/1704.03944

Spatial Memory for Context Reasoning in Object Detection

  • arxiv: https://arxiv.org/abs/1704.04224

Accurate Single Stage Detector Using Recurrent Rolling Convolution

  • intro: CVPR 2017. SenseTime
  • keywords: Recurrent Rolling Convolution (RRC)
  • arxiv: https://arxiv.org/abs/1704.05776
  • github: https://github.com/xiaohaoChen/rrc_detection

Deep Occlusion Reasoning for Multi-Camera Multi-Target Detection

  • arxiv: https://arxiv.org/abs/1704.05775

LCDet: Low-Complexity Fully-Convolutional Neural Networks for Object Detection in Embedded Systems

  • intro: Embedded Vision Workshop in CVPR. UC San Diego & Qualcomm Inc
  • arxiv: https://arxiv.org/abs/1705.05922

Point Linking Network for Object Detection

  • intro: Point Linking Network (PLN)
  • arxiv: https://arxiv.org/abs/1706.03646

Perceptual Generative Adversarial Networks for Small Object Detection

  • arxiv: https://arxiv.org/abs/1706.05274

Few-shot Object Detection

  • arxiv: https://arxiv.org/abs/1706.08249

Yes-Net: An effective Detector Based on Global Information

  • arxiv: https://arxiv.org/abs/1706.09180

SMC Faster R-CNN: Toward a scene-specialized multi-object detector

  • arxiv: https://arxiv.org/abs/1706.10217

Towards lightweight convolutional neural networks for object detection

  • arxiv: https://arxiv.org/abs/1707.01395

RON: Reverse Connection with Objectness Prior Networks for Object Detection

  • intro: CVPR 2017
  • arxiv: https://arxiv.org/abs/1707.01691
  • github: https://github.com/taokong/RON

Mimicking Very Efficient Network for Object Detection

  • intro: CVPR 2017. SenseTime & Beihang University
  • paper: http://openaccess.thecvf.com/content_cvpr_2017/papers/Li_Mimicking_Very_Efficient_CVPR_2017_paper.pdf

Residual Features and Unified Prediction Network for Single Stage Detection

https://arxiv.org/abs/1707.05031

Deformable Part-based Fully Convolutional Network for Object Detection

  • intro: BMVC 2017 (oral). Sorbonne Universités & CEDRIC
  • arxiv: https://arxiv.org/abs/1707.06175

Adaptive Feeding: Achieving Fast and Accurate Detections by Adaptively Combining Object Detectors

  • intro: ICCV 2017
  • arxiv: https://arxiv.org/abs/1707.06399

Recurrent Scale Approximation for Object Detection in CNN

  • intro: ICCV 2017
  • keywords: Recurrent Scale Approximation (RSA)
  • arxiv: https://arxiv.org/abs/1707.09531
  • github: https://github.com/sciencefans/RSA-for-object-detection

DSOD

DSOD: Learning Deeply Supervised Object Detectors from Scratch

这里写图片描述

  • intro: ICCV 2017. Fudan University & Tsinghua University & Intel Labs China
  • arxiv: https://arxiv.org/abs/1708.01241
  • github: https://github.com/szq0214/DSOD

Object Detection from Scratch with Deep Supervision

  • arxiv: https://arxiv.org/abs/1809.09294

##RetinaNet

Focal Loss for Dense Object Detection

  • intro: ICCV 2017 Best student paper award. Facebook AI Research
  • keywords: RetinaNet
  • arxiv: https://arxiv.org/abs/1708.02002

Focal Loss Dense Detector for Vehicle Surveillance

  • arxiv: https://arxiv.org/abs/1803.01114

CoupleNet: Coupling Global Structure with Local Parts for Object Detection

  • intro: ICCV 2017
  • arxiv: https://arxiv.org/abs/1708.02863

Incremental Learning of Object Detectors without Catastrophic Forgetting

  • intro: ICCV 2017. Inria
  • arxiv: https://arxiv.org/abs/1708.06977

Zoom Out-and-In Network with Map Attention Decision for Region Proposal and Object Detection

  • arxiv: https://arxiv.org/abs/1709.04347

StairNet: Top-Down Semantic Aggregation for Accurate One Shot Detection

  • arxiv: https://arxiv.org/abs/1709.05788

Dynamic Zoom-in Network for Fast Object Detection in Large Images

https://arxiv.org/abs/1711.05187

Zero-Annotation Object Detection with Web Knowledge Transfer

  • intro: NTU, Singapore & Amazon
  • keywords: multi-instance multi-label domain adaption learning framework
  • arxiv: https://arxiv.org/abs/1711.05954

MegDet

MegDet: A Large Mini-Batch Object Detector

  • intro: Peking University & Tsinghua University & Megvii Inc
  • arxiv: https://arxiv.org/abs/1711.07240

Single-Shot Refinement Neural Network for Object Detection

  • arxiv: https://arxiv.org/abs/1711.06897
  • github: https://github.com/sfzhang15/RefineDet
  • github: https://github.com/MTCloudVision/RefineDet-Mxnet

Receptive Field Block Net for Accurate and Fast Object Detection

  • intro: RFBNet
  • arxiv: https://arxiv.org/abs/1711.07767
  • github: https://github.com//ruinmessi/RFBNet

An Analysis of Scale Invariance in Object Detection - SNIP

  • intro: CVPR 2018
  • arxiv: https://arxiv.org/abs/1711.08189
  • github: https://github.com/bharatsingh430/snip

Feature Selective Networks for Object Detection

  • arxiv: https://arxiv.org/abs/1711.08879

Learning a Rotation Invariant Detector with Rotatable Bounding Box

  • arxiv: https://arxiv.org/abs/1711.09405
  • github(official, Caffe): https://github.com/liulei01/DRBox

Scalable Object Detection for Stylized Objects

  • intro: Microsoft AI & Research Munich
  • arxiv: https://arxiv.org/abs/1711.09822

Learning Object Detectors from Scratch with Gated Recurrent Feature Pyramids

  • arxiv: https://arxiv.org/abs/1712.00886
  • github: https://github.com/szq0214/GRP-DSOD

Deep Regionlets for Object Detection

  • keywords: region selection network, gating network
  • arxiv: https://arxiv.org/abs/1712.02408

Training and Testing Object Detectors with Virtual Images

  • intro: IEEE/CAA Journal of Automatica Sinica
  • arxiv: https://arxiv.org/abs/1712.08470

Large-Scale Object Discovery and Detector Adaptation from Unlabeled Video

  • keywords: object mining, object tracking, unsupervised object discovery by appearance-based clustering, self-supervised detector adaptation
  • arxiv: https://arxiv.org/abs/1712.08832

Spot the Difference by Object Detection

  • intro: Tsinghua University & JD Group
  • arxiv: https://arxiv.org/abs/1801.01051

Localization-Aware Active Learning for Object Detection

  • arxiv: https://arxiv.org/abs/1801.05124

Object Detection with Mask-based Feature Encoding

  • arxiv: https://arxiv.org/abs/1802.03934

LSTD: A Low-Shot Transfer Detector for Object Detection

  • intro: AAAI 2018
  • arxiv: https://arxiv.org/abs/1803.01529

Domain Adaptive Faster R-CNN for Object Detection in the Wild

  • intro: CVPR 2018. ETH Zurich & ESAT/PSI
  • arxiv: https://arxiv.org/abs/1803.03243
  • github(official. Caffe): https://github.com/yuhuayc/da-faster-rcnn

Pseudo Mask Augmented Object Detection

  • arxiv: https://arxiv.org/abs/1803.05858

Revisiting RCNN: On Awakening the Classification Power of Faster RCNN

  • intro: ECCV 2018
  • keywords: DCR V1
  • arxiv: https://arxiv.org/abs/1803.06799
  • github(official, MXNet): https://github.com/bowenc0221/Decoupled-Classification-Refinement

Decoupled Classification Refinement: Hard False Positive Suppression for Object Detection

  • keywords: DCR V2
  • arxiv: https://arxiv.org/abs/1810.04002
  • github(official, MXNet): https://github.com/bowenc0221/Decoupled-Classification-Refinement

Learning Region Features for Object Detection

  • intro: Peking University & MSRA
  • arxiv: https://arxiv.org/abs/1803.07066

Single-Shot Bidirectional Pyramid Networks for High-Quality Object Detection

  • intro: Singapore Management University & Zhejiang University
  • arxiv: https://arxiv.org/abs/1803.08208

Object Detection for Comics using Manga109 Annotations

  • intro: University of Tokyo & National Institute of Informatics, Japan
  • arxiv: https://arxiv.org/abs/1803.08670

Task-Driven Super Resolution: Object Detection in Low-resolution Images

  • arxiv: https://arxiv.org/abs/1803.11316

Transferring Common-Sense Knowledge for Object Detection

  • arxiv: https://arxiv.org/abs/1804.01077

Multi-scale Location-aware Kernel Representation for Object Detection

  • intro: CVPR 2018
  • arxiv: https://arxiv.org/abs/1804.00428
  • github: https://github.com/Hwang64/MLKP

Loss Rank Mining: A General Hard Example Mining Method for Real-time Detectors

  • intro: National University of Defense Technology
  • arxiv: https://arxiv.org/abs/1804.04606

DetNet: A Backbone network for Object Detection

  • intro: Tsinghua University & Megvii Inc
  • arxiv: https://arxiv.org/abs/1804.06215

Robust Physical Adversarial Attack on Faster R-CNN Object Detector

  • arxiv: https://arxiv.org/abs/1804.05810

AdvDetPatch: Attacking Object Detectors with Adversarial Patches

  • arxiv: https://arxiv.org/abs/1806.02299

Attacking Object Detectors via Imperceptible Patches on Background

  • https://arxiv.org/abs/1809.05966

Physical Adversarial Examples for Object Detectors

  • intro: WOOT 2018
  • arxiv: https://arxiv.org/abs/1807.07769

Quantization Mimic: Towards Very Tiny CNN for Object Detection

  • arxiv: https://arxiv.org/abs/1805.02152

Object detection at 200 Frames Per Second

  • intro: United Technologies Research Center-Ireland
  • arxiv: https://arxiv.org/abs/1805.06361

Object Detection using Domain Randomization and Generative Adversarial Refinement of Synthetic Images

  • intro: CVPR 2018 Deep Vision Workshop
  • arxiv: https://arxiv.org/abs/1805.11778

SNIPER: Efficient Multi-Scale Training

  • intro: University of Maryland
  • keywords: SNIPER (Scale Normalization for Image Pyramid with Efficient Resampling)
  • arxiv: https://arxiv.org/abs/1805.09300
  • github: https://github.com/mahyarnajibi/SNIPER

Soft Sampling for Robust Object Detection

  • arxiv: https://arxiv.org/abs/1806.06986

MetaAnchor: Learning to Detect Objects with Customized Anchors

  • intro: Megvii Inc (Face++) & Fudan University
  • arxiv: https://arxiv.org/abs/1807.00980

Localization Recall Precision (LRP): A New Performance Metric for Object Detection

  • intro: ECCV 2018. Middle East Technical University
  • arxiv: https://arxiv.org/abs/1807.01696
  • github: https://github.com/cancam/LRP

Auto-Context R-CNN

  • intro: Rejected by ECCV18
  • arxiv: https://arxiv.org/abs/1807.02842

Pooling Pyramid Network for Object Detection

  • intro: Google AI Perception
  • arxiv: https://arxiv.org/abs/1807.03284

Modeling Visual Context is Key to Augmenting Object Detection Datasets

  • intro: ECCV 2018
  • arxiv: https://arxiv.org/abs/1807.07428

Dual Refinement Network for Single-Shot Object Detection

  • arxiv: https://arxiv.org/abs/1807.08638

Acquisition of Localization Confidence for Accurate Object Detection

  • intro: ECCV 2018
  • arxiv: https://arxiv.org/abs/1807.11590
  • gihtub: https://github.com/vacancy/PreciseRoIPooling

CornerNet: Detecting Objects as Paired Keypoints

  • intro: ECCV 2018
  • keywords: IoU-Net, PreciseRoIPooling
  • arxiv: https://arxiv.org/abs/1808.01244
  • github: https://github.com/umich-vl/CornerNet

Unsupervised Hard Example Mining from Videos for Improved Object Detection

  • intro: ECCV 2018
  • arxiv: https://arxiv.org/abs/1808.04285

SAN: Learning Relationship between Convolutional Features for Multi-Scale Object Detection

  • arxiv: https://arxiv.org/abs/1808.04974

A Survey of Modern Object Detection Literature using Deep Learning

  • arxiv: https://arxiv.org/abs/1808.07256

Tiny-DSOD: Lightweight Object Detection for Resource-Restricted Usages

  • intro: BMVC 2018
  • arxiv: https://arxiv.org/abs/1807.11013
  • github: https://github.com/lyxok1/Tiny-DSOD

Deep Feature Pyramid Reconfiguration for Object Detection

  • intro: ECCV 2018
  • arxiv: https://arxiv.org/abs/1808.07993

MDCN: Multi-Scale, Deep Inception Convolutional Neural Networks for Efficient Object Detection

  • intro: ICPR 2018
  • arxiv: https://arxiv.org/abs/1809.01791

Recent Advances in Object Detection in the Age of Deep Convolutional Neural Networks

  • https://arxiv.org/abs/1809.03193

Deep Learning for Generic Object Detection: A Survey

  • https://arxiv.org/abs/1809.02165

Training Confidence-Calibrated Classifier for Detecting Out-of-Distribution Samples

  • intro: ICLR 2018
  • arxiv: https://github.com/alinlab/Confident_classifier

ScratchDet:Exploring to Train Single-Shot Object Detectors from Scratch

  • arxiv: https://arxiv.org/abs/1810.08425
  • github: https://github.com/KimSoybean/ScratchDet

Fast and accurate object detection in high resolution 4K and 8K video using GPUs

  • intro: Best Paper Finalist at IEEE High Performance Extreme Computing Conference (HPEC) 2018
  • intro: Carnegie Mellon University
  • arxiv: https://arxiv.org/abs/1810.10551

Hybrid Knowledge Routed Modules for Large-scale Object Detection

  • intro: NIPS 2018
  • arxiv: https://arxiv.org/abs/1810.12681
  • github(official, PyTorch): https://github.com/chanyn/HKRM

Gradient Harmonized Single-stage Detector

  • intro: AAAI 2019
  • arxiv: https://arxiv.org/abs/1811.05181

M2Det: A Single-Shot Object Detector based on Multi-Level Feature Pyramid Network

  • intro: AAAI 2019
  • arxiv: https://arxiv.org/abs/1811.04533
  • github: https://github.com/qijiezhao/M2Det

BAN: Focusing on Boundary Context for Object Detection

  • arxiv:https://arxiv.org/abs/1811.05243

Multi-layer Pruning Framework for Compressing Single Shot MultiBox Detector

  • intro: WACV 2019
  • arxiv: https://arxiv.org/abs/1811.08342

R2CNN++: Multi-Dimensional Attention Based Rotation Invariant Detector with Robust Anchor Strategy

  • arxiv: https://arxiv.org/abs/1811.07126
  • github: https://github.com/DetectionTeamUCAS/R2CNN-Plus-Plus_Tensorflow

DeRPN: Taking a further step toward more general object detection

  • intro: AAAI 2019
  • intro: South China University of Technology
  • arxiv: https://arxiv.org/abs/1811.06700
  • github: https://github.com/HCIILAB/DeRPN

Fast Efficient Object Detection Using Selective Attention

  • arxiv:https://arxiv.org/abs/1811.07502

Sampling Techniques for Large-Scale Object Detection from Sparsely Annotated Objects

  • arxiv:https://arxiv.org/abs/1811.10862

Efficient Coarse-to-Fine Non-Local Module for the Detection of Small Objects

  • arxiv:https://arxiv.org/abs/1811.12152

Deep Regionlets: Blended Representation and Deep Learning for Generic Object Detection

  • arxiv:https://arxiv.org/abs/1811.11318

Grid R-CNN

  • intro: SenseTime
  • arxiv: https://arxiv.org/abs/1811.12030

Transferable Adversarial Attacks for Image and Video Object Detection

-arxiv:https://arxiv.org/abs/1811.12641

Anchor Box Optimization for Object Detection

  • intro: University of Illinois at Urbana-Champaign & Microsoft Research
  • arxiv: https://arxiv.org/abs/1812.00469

AutoFocus: Efficient Multi-Scale Inference

  • intro: University of Maryland
  • arxiv: https://arxiv.org/abs/1812.01600

###Few-shot Object Detection via Feature Reweighting

  • arxiv:https://arxiv.org/abs/1812.01866

Practical Adversarial Attack Against Object Detector

  • arxiv:https://arxiv.org/abs/1812.10217

Learning Efficient Detector with Semi-supervised Adaptive Distillation

  • intro: SenseTime Research
  • arxiv: https://arxiv.org/abs/1901.00366
  • github: https://github.com/Tangshitao/Semi-supervised-Adaptive-Distillation

Scale-Aware Trident Networks for Object Detection

intro: University of Chinese Academy of Sciences & TuSimple
arxiv: https://arxiv.org/abs/1901.01892
github: https://github.com/TuSimple/simpledet

Region Proposal by Guided Anchoring

  • intro: CUHK - SenseTime Joint Lab & Amazon Rekognition & Nanyang Technological University
  • arxiv: https://arxiv.org/abs/1901.03278

Consistent Optimization for Single-Shot Object Detection

  • arxiv: https://arxiv.org/abs/1901.06563
  • blog: https://zhuanlan.zhihu.com/p/55416312

Bottom-up Object Detection by Grouping Extreme and Center Points

  • keywords: ExtremeNet
  • arxiv: https://arxiv.org/abs/1901.08043
  • github: https://github.com/xingyizhou/ExtremeNet

A Single-shot Object Detector with Feature Aggragation and Enhancement

  • arxiv: https://arxiv.org/abs/1902.02923

Bag of Freebies for Training Object Detection Neural Networks

  • intro: Amazon Web Services
  • arxiv: https://arxiv.org/abs/1902.04103

Non-Maximum Suppression (NMS)

End-to-End Integration of a Convolutional Network, Deformable Parts Model and Non-Maximum Suppression

  • intro: CVPR 2015
  • arxiv: http://arxiv.org/abs/1411.5309
  • paper: http://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Wan_End-to-End_Integration_of_2015_CVPR_paper.pdf

A convnet for non-maximum suppression

  • arxiv: http://arxiv.org/abs/1511.06437
    Improving Object Detection With One Line of Code

Soft-NMS – Improving Object Detection With One Line of Code

  • intro: ICCV 2017. University of Maryland
  • keywords: Soft-NMS
  • arxiv: https://arxiv.org/abs/1704.04503
  • github: https://github.com/bharatsingh430/soft-nms

Learning non-maximum suppression

  • intro: CVPR 2017
  • project page: https://www.mpi-inf.mpg.de/departments/computer-vision-and-multimodal-computing/research/object-recognition-and-scene-understanding/learning-nms/
  • arxiv: https://arxiv.org/abs/1705.02950
  • github: https://github.com/hosang/gossipnet

Relation Networks for Object Detection

  • intro: CVPR 2018 oral
  • arxiv: https://arxiv.org/abs/1711.11575
  • github(official, MXNet): https://github.com/msracver/Relation-Networks-for-Object-Detection

Learning Pairwise Relationship for Multi-object Detection in Crowded Scenes

  • keywords: Pairwise-NMS
  • arxiv: https://arxiv.org/abs/1901.03796

Daedalus: Breaking Non-Maximum Suppression in Object Detection via Adversarial Examples

  • arxiv: https://arxiv.org/abs/1902.02067

Adversarial Examples

Adversarial Examples that Fool Detectors

  • intro: University of Illinois
  • arxiv: https://arxiv.org/abs/1712.02494

Adversarial Examples Are Not Easily Detected: Bypassing Ten Detection Methods

  • project page: http://nicholas.carlini.com/code/nn_breaking_detection/
  • arxiv: https://arxiv.org/abs/1705.07263
  • github: https://github.com/carlini/nn_breaking_detection

Weakly Supervised Object Detection

Track and Transfer: Watching Videos to Simulate Strong Human Supervision for Weakly-Supervised Object Detection

  • intro: CVPR 2016
  • arxiv: http://arxiv.org/abs/1604.05766

Weakly supervised object detection using pseudo-strong labels

  • arxiv: http://arxiv.org/abs/1607.04731

Saliency Guided End-to-End Learning for Weakly Supervised Object Detection

  • intro: IJCAI 2017
  • arxiv: https://arxiv.org/abs/1706.06768

Visual and Semantic Knowledge Transfer for Large Scale Semi-supervised Object Detection

  • intro: TPAMI 2017. National Institutes of Health (NIH) Clinical Center
  • arxiv: https://arxiv.org/abs/1801.03145

Video Object Detection

Learning Object Class Detectors from Weakly Annotated Video

  • intro: CVPR 2012
  • paper: https://www.vision.ee.ethz.ch/publications/papers/proceedings/eth_biwi_00905.pdf

Analysing domain shift factors between videos and images for object detection

  • arxiv: https://arxiv.org/abs/1501.01186

Video Object Recognition

  • slides: http://vision.princeton.edu/courses/COS598/2015sp/slides/VideoRecog/Video Object Recognition.pptx

Deep Learning for Saliency Prediction in Natural Video

  • intro: Submitted on 12 Jan 2016
  • keywords: Deep learning, saliency map, optical flow, convolution network, contrast features
  • paper: https://hal.archives-ouvertes.fr/hal-01251614/document

T-CNN: Tubelets with Convolutional Neural Networks for Object Detection from Videos

  • intro: Winning solution in ILSVRC2015 Object Detection from Video(VID) Task
  • arxiv: http://arxiv.org/abs/1604.02532
  • github: https://github.com/myfavouritekk/T-CNN

Object Detection from Video Tubelets with Convolutional Neural Networks

  • intro: CVPR 2016 Spotlight paper
  • arxiv: https://arxiv.org/abs/1604.04053
  • paper: http://www.ee.cuhk.edu.hk/~wlouyang/Papers/KangVideoDet_CVPR16.pdf
  • gihtub: https://github.com/myfavouritekk/vdetlib

Object Detection in Videos with Tubelets and Multi-context Cues

  • intro: SenseTime Group
  • slides: http://www.ee.cuhk.edu.hk/~xgwang/CUvideo.pdf
  • slides: http://image-net.org/challenges/talks/Object Detection in Videos with Tubelets and Multi-context Cues - Final.pdf

Context Matters: Refining Object Detection in Video with Recurrent Neural Networks

  • intro: BMVC 2016
  • keywords: pseudo-labeler
  • arxiv: http://arxiv.org/abs/1607.04648
  • paper: http://vision.cornell.edu/se3/wp-content/uploads/2016/07/video_object_detection_BMVC.pdf

CNN Based Object Detection in Large Video Images

  • intro: WangTao @ 爱奇艺
  • keywords: object retrieval, object detection, scene classification
  • slides: http://on-demand.gputechconf.com/gtc/2016/presentation/s6362-wang-tao-cnn-based-object-detection-large-video-images.pdf

Object Detection in Videos with Tubelet Proposal Networks

  • arxiv: https://arxiv.org/abs/1702.06355

Flow-Guided Feature Aggregation for Video Object Detection

  • intro: MSRA
  • arxiv: https://arxiv.org/abs/1703.10025

Video Object Detection using Faster R-CNN

  • blog: http://andrewliao11.github.io/object_detection/faster_rcnn/
  • github: https://github.com/andrewliao11/py-faster-rcnn-imagenet

Improving Context Modeling for Video Object Detection and Tracking

http://image-net.org/challenges/talks_2017/ilsvrc2017_short(poster).pdf

Temporal Dynamic Graph LSTM for Action-driven Video Object Detection

  • intro: ICCV 2017
  • arxiv: https://arxiv.org/abs/1708.00666

Mobile Video Object Detection with Temporally-Aware Feature Maps

  • arxiv: https://arxiv.org/abs/1711.06368

Towards High Performance Video Object Detection

  • arxiv: https://arxiv.org/abs/1711.11577

Impression Network for Video Object Detection

  • arxiv: https://arxiv.org/abs/1712.05896

Spatial-Temporal Memory Networks for Video Object Detection

  • arxiv: https://arxiv.org/abs/1712.06317

3D-DETNet: a Single Stage Video-Based Vehicle Detector

  • arxiv: https://arxiv.org/abs/1801.01769

Object Detection in Videos by Short and Long Range Object Linking

  • arxiv: https://arxiv.org/abs/1801.09823

Object Detection in Video with Spatiotemporal Sampling Networks

  • intro: University of Pennsylvania, 2Dartmouth College
  • arxiv: https://arxiv.org/abs/1803.05549

Towards High Performance Video Object Detection for Mobiles

  • intro: Microsoft Research Asia
  • arxiv: https://arxiv.org/abs/1804.05830

Optimizing Video Object Detection via a Scale-Time Lattice

  • intro: CVPR 2018
  • project page: http://mmlab.ie.cuhk.edu.hk/projects/ST-Lattice/
  • arxiv: https://arxiv.org/abs/1804.05472
  • github: https://github.com/hellock/scale-time-lattice

Pack and Detect: Fast Object Detection in Videos Using Region-of-Interest Packing

  • https://arxiv.org/abs/1809.01701

Fast Object Detection in Compressed Video

  • arxiv:https://arxiv.org/abs/1811.11057

Tube-CNN: Modeling temporal evolution of appearance for object detection in video

  • intro: INRIA/ENS
  • arxiv: https://arxiv.org/abs/1812.02619

AdaScale: Towards Real-time Video Object Detection Using Adaptive Scaling

  • intro: SysML 2019 oral
  • arxiv: https://arxiv.org/abs/1902.02910

Object Detection on Mobile Devices

Pelee: A Real-Time Object Detection System on Mobile Devices

  • intro: ICLR 2018 workshop track
  • intro: based on the SSD
  • arxiv: https://arxiv.org/abs/1804.06882
  • github: https://github.com/Robert-JunWang/Pelee

Object Detection in 3D

Vote3Deep: Fast Object Detection in 3D Point Clouds Using Efficient Convolutional Neural Networks

  • arxiv: https://arxiv.org/abs/1609.06666

Complex-YOLO: Real-time 3D Object Detection on Point Clouds

  • intro: Valeo Schalter und Sensoren GmbH & Ilmenau University of Technology
  • arxiv: https://arxiv.org/abs/1803.06199

Focal Loss in 3D Object Detection

  • arxiv: https://arxiv.org/abs/1809.06065
  • github: https://github.com/pyun-ram/FL3D

3D Object Detection Using Scale Invariant and Feature Reweighting Networks

  • intro: AAAI 2019
  • arxiv: https://arxiv.org/abs/1901.02237

3D Backbone Network for 3D Object Detection

  • arxiv: https://arxiv.org/abs/1901.08373

Object Detection on RGB-D

Learning Rich Features from RGB-D Images for Object Detection and Segmentation

  • arxiv: http://arxiv.org/abs/1407.5736

Differential Geometry Boosts Convolutional Neural Networks for Object Detection

  • intro: CVPR 2016
  • paper: http://www.cv-foundation.org/openaccess/content_cvpr_2016_workshops/w23/html/Wang_Differential_Geometry_Boosts_CVPR_2016_paper.html

A Self-supervised Learning System for Object Detection using Physics Simulation and Multi-view Pose Estimation

  • arxiv: https://arxiv.org/abs/1703.03347

Zero-Shot Object Detection

Zero-Shot Detection

  • intro: Australian National University
  • keywords: YOLO
  • arxiv: https://arxiv.org/abs/1803.07113

Zero-Shot Object Detection

  • arxiv: https://arxiv.org/abs/1804.04340

Zero-Shot Object Detection: Learning to Simultaneously Recognize and Localize Novel Concepts

  • intro: Australian National University
  • arxiv: https://arxiv.org/abs/1803.06049

Zero-Shot Object Detection by Hybrid Region Embedding

  • intro: Middle East Technical University & Hacettepe University
  • arxiv: https://arxiv.org/abs/1805.06157

Salient Object Detection

This task involves predicting the salient regions of an image given by human eye fixations.

Best Deep Saliency Detection Models (CVPR 2016 & 2015)

  • page: http://i.cs.hku.hk/~yzyu/vision.html

Large-scale optimization of hierarchical features for saliency prediction in natural images

  • paper: http://coxlab.org/pdfs/cvpr2014_vig_saliency.pdf

Predicting Eye Fixations using Convolutional Neural Networks

  • paper: http://www.escience.cn/system/file?fileId=72648

Saliency Detection by Multi-Context Deep Learning

  • paper: http://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Zhao_Saliency_Detection_by_2015_CVPR_paper.pdf

DeepSaliency: Multi-Task Deep Neural Network Model for Salient Object Detection

  • arxiv: http://arxiv.org/abs/1510.05484

SuperCNN: A Superpixelwise Convolutional Neural Network for Salient Object Detection

  • paper: www.shengfenghe.com/supercnn-a-superpixelwise-convolutional-neural-network-for-salient-object-detection.html

Shallow and Deep Convolutional Networks for Saliency Prediction

  • intro: CVPR 2016
  • arxiv: http://arxiv.org/abs/1603.00845
  • github: https://github.com/imatge-upc/saliency-2016-cvpr

Recurrent Attentional Networks for Saliency Detection

  • intro: CVPR 2016. recurrent attentional convolutional-deconvolution network (RACDNN)
  • arxiv: http://arxiv.org/abs/1604.03227

Two-Stream Convolutional Networks for Dynamic Saliency Prediction

  • arxiv: http://arxiv.org/abs/1607.04730

Unconstrained Salient Object Detection

Unconstrained Salient Object Detection via Proposal Subset Optimization

这里写图片描述

  • intro: CVPR 2016
  • project page: http://cs-people.bu.edu/jmzhang/sod.html
  • paper: http://cs-people.bu.edu/jmzhang/SOD/CVPR16SOD_camera_ready.pdf
  • github: https://github.com/jimmie33/SOD
  • caffe model zoo: https://github.com/BVLC/caffe/wiki/Model-Zoo#cnn-object-proposal-models-for-salient-object-detection

DHSNet: Deep Hierarchical Saliency Network for Salient Object Detection

  • paper: http://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Liu_DHSNet_Deep_Hierarchical_CVPR_2016_paper.pdf

Salient Object Subitizing

这里写图片描述

  • intro: CVPR 2015
  • intro: predicting the existence and the number of salient objects in an image using holistic cues
  • project page: http://cs-people.bu.edu/jmzhang/sos.html
  • arxiv: http://arxiv.org/abs/1607.07525
  • paper: http://cs-people.bu.edu/jmzhang/SOS/SOS_preprint.pdf
  • caffe model zoo: https://github.com/BVLC/caffe/wiki/Model-Zoo#cnn-models-for-salient-object-subitizing

Deeply-Supervised Recurrent Convolutional Neural Network for Saliency Detection

  • intro: ACMMM 2016. deeply-supervised recurrent convolutional neural network (DSRCNN)
  • arxiv: http://arxiv.org/abs/1608.05177

Saliency Detection via Combining Region-Level and Pixel-Level Predictions with CNNs

  • intro: ECCV 2016
  • arxiv: http://arxiv.org/abs/1608.05186

Edge Preserving and Multi-Scale Contextual Neural Network for Salient Object Detection

  • arxiv: http://arxiv.org/abs/1608.08029

A Deep Multi-Level Network for Saliency Prediction

  • arxiv: http://arxiv.org/abs/1609.01064

Visual Saliency Detection Based on Multiscale Deep CNN Features

  • intro: IEEE Transactions on Image Processing
  • arxiv: http://arxiv.org/abs/1609.02077

A Deep Spatial Contextual Long-term Recurrent Convolutional Network for Saliency Detection

  • intro: DSCLRCN
  • arxiv: https://arxiv.org/abs/1610.01708

Deeply supervised salient object detection with short connections

  • intro: IEEE TPAMI 2018 (IEEE CVPR 2017)
  • arxiv: https://arxiv.org/abs/1611.04849
  • github(official, Caffe): https://github.com/Andrew-Qibin/DSS
  • github(Tensorflow): https://github.com/Joker316701882/Salient-Object-Detection

Weakly Supervised Top-down Salient Object Detection

  • intro: Nanyang Technological University
  • arxiv: https://arxiv.org/abs/1611.05345

SalGAN: Visual Saliency Prediction with Generative Adversarial Networks

  • project page: https://imatge-upc.github.io/saliency-salgan-2017/
  • arxiv: https://arxiv.org/abs/1701.01081

Visual Saliency Prediction Using a Mixture of Deep Neural Networks

  • arxiv: https://arxiv.org/abs/1702.00372

A Fast and Compact Salient Score Regression Network Based on Fully Convolutional Network

  • arxiv: https://arxiv.org/abs/1702.00615

Saliency Detection by Forward and Backward Cues in Deep-CNNs

  • arxiv: https://arxiv.org/abs/1703.00152

Supervised Adversarial Networks for Image Saliency Detection

  • arxiv: https://arxiv.org/abs/1704.07242

Group-wise Deep Co-saliency Detection

  • arxiv: https://arxiv.org/abs/1707.07381

Towards the Success Rate of One: Real-time Unconstrained Salient Object Detection

  • intro: University of Maryland College Park & eBay Inc
  • arxiv: https://arxiv.org/abs/1708.00079

Amulet: Aggregating Multi-level Convolutional Features for Salient Object Detection

  • intro: ICCV 2017
  • arixv: https://arxiv.org/abs/1708.02001

Learning Uncertain Convolutional Features for Accurate Saliency Detection

  • intro: Accepted as a poster in ICCV 2017
  • arxiv: https://arxiv.org/abs/1708.02031

Deep Edge-Aware Saliency Detection

  • arxiv: https://arxiv.org/abs/1708.04366

Self-explanatory Deep Salient Object Detection

  • intro: National University of Defense Technology, China & National University of Singapore
  • arxiv: https://arxiv.org/abs/1708.05595

PiCANet: Learning Pixel-wise Contextual Attention in ConvNets and Its Application in Saliency Detection

  • arxiv: https://arxiv.org/abs/1708.06433

DeepFeat: A Bottom Up and Top Down Saliency Model Based on Deep Features of Convolutional Neural Nets

  • arxiv: https://arxiv.org/abs/1709.02495

Recurrently Aggregating Deep Features for Salient Object Detection

  • intro: AAAI 2018
  • paper: https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16775/16281

Deep saliency: What is learnt by a deep network about saliency?

  • intro: 2nd Workshop on Visualisation for Deep Learning in the 34th International Conference On Machine Learning
  • arxiv: https://arxiv.org/abs/1801.04261

Contrast-Oriented Deep Neural Networks for Salient Object Detection

  • intro: TNNLS
  • arxiv: https://arxiv.org/abs/1803.11395

Salient Object Detection by Lossless Feature Reflection

  • intro: IJCAI 2018
  • arxiv: https://arxiv.org/abs/1802.06527

HyperFusion-Net: Densely Reflective Fusion for Salient Object Detection

  • arxiv: https://arxiv.org/abs/1804.05142

Video Saliency Detection

Deep Learning For Video Saliency Detection

  • arxiv: https://arxiv.org/abs/1702.00871

Video Salient Object Detection Using Spatiotemporal Deep Features

  • arxiv: https://arxiv.org/abs/1708.01447

Predicting Video Saliency with Object-to-Motion CNN and Two-layer Convolutional LSTM

  • arxiv: https://arxiv.org/abs/1709.06316

Visual Relationship Detection

Visual Relationship Detection with Language Priors

  • intro: ECCV 2016 oral
  • paper: https://cs.stanford.edu/people/ranjaykrishna/vrd/vrd.pdf
  • github: https://github.com/Prof-Lu-Cewu/Visual-Relationship-Detection

ViP-CNN: A Visual Phrase Reasoning Convolutional Neural Network for Visual Relationship Detection

  • intro: Visual Phrase reasoning Convolutional Neural Network (ViP-CNN), Visual Phrase Reasoning Structure (VPRS)
  • arxiv: https://arxiv.org/abs/1702.07191

Visual Translation Embedding Network for Visual Relation Detection

  • arxiv: https://www.arxiv.org/abs/1702.08319

Deep Variation-structured Reinforcement Learning for Visual Relationship and Attribute Detection

  • intro: CVPR 2017 spotlight paper
  • arxiv: https://arxiv.org/abs/1703.03054

Detecting Visual Relationships with Deep Relational Networks

  • intro: CVPR 2017 oral. The Chinese University of Hong Kong
  • arxiv: https://arxiv.org/abs/1704.03114

Identifying Spatial Relations in Images using Convolutional Neural Networks

  • arxiv: https://arxiv.org/abs/1706.04215

PPR-FCN: Weakly Supervised Visual Relation Detection via Parallel Pairwise R-FCN

  • intro: ICCV
  • arxiv: https://arxiv.org/abs/1708.01956

Natural Language Guided Visual Relationship Detection

  • arxiv: https://arxiv.org/abs/1711.06032

Detecting Visual Relationships Using Box Attention

  • intro: Google AI & IST Austria
  • arxiv: https://arxiv.org/abs/1807.02136

Google AI Open Images - Visual Relationship Track

  • intro: Detect pairs of objects in particular relationships
  • kaggle: https://www.kaggle.com/c/google-ai-open-images-visual-relationship-track

Context-Dependent Diffusion Network for Visual Relationship Detection

  • intro: 2018 ACM Multimedia Conference
  • arxiv: https://arxiv.org/abs/1809.06213

A Problem Reduction Approach for Visual Relationships Detection

  • intro: ECCV 2018 Workshop
  • arxiv: https://arxiv.org/abs/1809.09828

Face Deteciton

Multi-view Face Detection Using Deep Convolutional Neural Networks

  • intro: Yahoo
  • arxiv: http://arxiv.org/abs/1502.02766
  • github: https://github.com/guoyilin/FaceDetection_CNN

From Facial Parts Responses to Face Detection: A Deep Learning Approach

  • intro: ICCV 2015. CUHK
  • project page: http://personal.ie.cuhk.edu.hk/~ys014/projects/Faceness/Faceness.html
  • arxiv: https://arxiv.org/abs/1509.06451
  • paper: http://www.cv-foundation.org/openaccess/content_iccv_2015/papers/Yang_From_Facial_Parts_ICCV_2015_paper.pdf

Compact Convolutional Neural Network Cascade for Face Detection

  • arxiv: http://arxiv.org/abs/1508.01292
  • github: https://github.com/Bkmz21/FD-Evaluation
  • github: https://github.com/Bkmz21/CompactCNNCascade

Face Detection with End-to-End Integration of a ConvNet and a 3D Model

  • intro: ECCV 2016
  • arxiv: https://arxiv.org/abs/1606.00850
  • github(MXNet): https://github.com/tfwu/FaceDetection-ConvNet-3D

CMS-RCNN: Contextual Multi-Scale Region-based CNN for Unconstrained Face Detection

  • intro: CMU
  • arxiv: https://arxiv.org/abs/1606.05413

Towards a Deep Learning Framework for Unconstrained Face Detection

  • intro: overlap with CMS-RCNN
  • arxiv: https://arxiv.org/abs/1612.05322

Supervised Transformer Network for Efficient Face Detection

  • arxiv: http://arxiv.org/abs/1607.05477

UnitBox: An Advanced Object Detection Network

  • intro: ACM MM 2016
  • keywords: IOULoss
  • arxiv: http://arxiv.org/abs/1608.01471

Bootstrapping Face Detection with Hard Negative Examples

  • author: 万韶华 @ 小米.
  • intro: Faster R-CNN, hard negative mining. state-of-the-art on the FDDB dataset
  • arxiv: http://arxiv.org/abs/1608.02236

Grid Loss: Detecting Occluded Faces

  • intro: ECCV 2016
  • arxiv: https://arxiv.org/abs/1609.00129
  • paper: http://lrs.icg.tugraz.at/pubs/opitz_eccv_16.pdf
  • poster: http://www.eccv2016.org/files/posters/P-2A-34.pdf

A Multi-Scale Cascade Fully Convolutional Network Face Detector

  • intro: ICPR 2016
  • arxiv: http://arxiv.org/abs/1609.03536

MTCNN

Joint Face Detection and Alignment using Multi-task Cascaded Convolutional Neural Networks

这里写图片描述

  • project page: https://kpzhang93.github.io/MTCNN_face_detection_alignment/index.html
  • arxiv: https://arxiv.org/abs/1604.02878
  • github(official, Matlab): https://github.com/kpzhang93/MTCNN_face_detection_alignment
  • github: https://github.com/pangyupo/mxnet_mtcnn_face_detection
  • github: https://github.com/DaFuCoding/MTCNN_Caffe
  • github(MXNet): https://github.com/Seanlinx/mtcnn
  • github: https://github.com/Pi-DeepLearning/RaspberryPi-FaceDetection-MTCNN-Caffe-With-Motion
  • github(Caffe): https://github.com/foreverYoungGitHub/MTCNN
  • github: https://github.com/CongWeilin/mtcnn-caffe
  • github(OpenCV+OpenBlas): https://github.com/AlphaQi/MTCNN-light
  • github(Tensorflow+golang): https://github.com/jdeng/goface

Face Detection using Deep Learning: An Improved Faster RCNN Approach

  • intro: DeepIR Inc
  • arxiv: https://arxiv.org/abs/1701.08289

Faceness-Net: Face Detection through Deep Facial Part Responses

  • intro: An extended version of ICCV 2015 paper
  • arxiv: https://arxiv.org/abs/1701.08393

Multi-Path Region-Based Convolutional Neural Network for Accurate Detection of Unconstrained “Hard Faces”

  • intro: CVPR 2017. MP-RCNN, MP-RPN
  • arxiv: https://arxiv.org/abs/1703.09145

End-To-End Face Detection and Recognition

  • arxiv: https://arxiv.org/abs/1703.10818

Face R-CNN

  • arxiv: https://arxiv.org/abs/1706.01061

Face Detection through Scale-Friendly Deep Convolutional Networks

  • arxiv: https://arxiv.org/abs/1706.02863

Scale-Aware Face Detection

  • intro: CVPR 2017. SenseTime & Tsinghua University
  • arxiv: https://arxiv.org/abs/1706.09876

Detecting Faces Using Inside Cascaded Contextual CNN

  • intro: CVPR 2017. Tencent AI Lab & SenseTime
  • paper: http://ai.tencent.com/ailab/media/publications/Detecting_Faces_Using_Inside_Cascaded_Contextual_CNN.pdf

Multi-Branch Fully Convolutional Network for Face Detection

  • arxiv: https://arxiv.org/abs/1707.06330

SSH: Single Stage Headless Face Detector

  • intro: ICCV 2017. University of Maryland
  • arxiv: https://arxiv.org/abs/1708.03979
  • github(official, Caffe): https://github.com/mahyarnajibi/SSH

Dockerface: an easy to install and use Faster R-CNN face detector in a Docker container

  • arxiv: https://arxiv.org/abs/1708.04370

FaceBoxes: A CPU Real-time Face Detector with High Accuracy

  • intro: IJCB 2017
  • keywords: Rapidly Digested Convolutional Layers (RDCL), Multiple Scale Convolutional Layers (MSCL)
  • intro: the proposed detector runs at 20 FPS on a single CPU core and 125 FPS using a GPU for VGA-resolution images
  • arxiv: https://arxiv.org/abs/1708.05234
  • github(official): https://github.com/sfzhang15/FaceBoxes
  • github(Caffe): https://github.com/zeusees/FaceBoxes

S3FD: Single Shot Scale-invariant Face Detector

  • intro: ICCV 2017. Chinese Academy of Sciences
  • intro: can run at 36 FPS on a Nvidia Titan X (Pascal) for VGA-resolution images
  • arxiv: https://arxiv.org/abs/1708.05237
  • github(Caffe, official): https://github.com/sfzhang15/SFD
  • github: https://github.com//clcarwin/SFD_pytorch

Detecting Faces Using Region-based Fully Convolutional Networks

  • arxiv: https://arxiv.org/abs/1709.05256

AffordanceNet: An End-to-End Deep Learning Approach for Object Affordance Detection

  • arxiv: https://arxiv.org/abs/1709.07326

Face Attention Network: An effective Face Detector for the Occluded Faces

  • arxiv: https://arxiv.org/abs/1711.07246

Feature Agglomeration Networks for Single Stage Face Detection

  • arxiv: https://arxiv.org/abs/1712.00721

Face Detection Using Improved Faster RCNN

  • intro: Huawei Cloud BU
  • arxiv: https://arxiv.org/abs/1802.02142

PyramidBox: A Context-assisted Single Shot Face Detector

  • intro: Baidu, Inc
  • arxiv: https://arxiv.org/abs/1803.07737

A Fast Face Detection Method via Convolutional Neural Network

  • intro: Neurocomputing
  • arxiv: https://arxiv.org/abs/1803.10103

Beyond Trade-off: Accelerate FCN-based Face Detector with Higher Accuracy

  • intro: CVPR 2018. Beihang University & CUHK & Sensetime
  • arxiv: https://arxiv.org/abs/1804.05197

Real-Time Rotation-Invariant Face Detection with Progressive Calibration Networks

  • intro: CVPR 2018
  • arxiv: https://arxiv.org/abs/1804.06039
  • github: https://github.com/Jack-CV/PCN

SFace: An Efficient Network for Face Detection in Large Scale Variations

  • intro: Beihang University & Megvii Inc. (Face++)
  • arxiv: https://arxiv.org/abs/1804.06559

Survey of Face Detection on Low-quality Images

  • arxiv: https://arxiv.org/abs/1804.07362

Anchor Cascade for Efficient Face Detection

  • intro: The University of Sydney
  • arxiv: https://arxiv.org/abs/1805.03363

Adversarial Attacks on Face Detectors using Neural Net based Constrained Optimization

  • intro: IEEE MMSP
  • arxiv: https://arxiv.org/abs/1805.12302

Selective Refinement Network for High Performance Face Detection

  • https://arxiv.org/abs/1809.02693

DSFD: Dual Shot Face Detector

  • arxiv:https://arxiv.org/abs/1810.10220

Learning Better Features for Face Detection with Feature Fusion and Segmentation Supervision

  • arxiv:https://arxiv.org/abs/1811.08557

FA-RPN: Floating Region Proposals for Face Detection

  • arxiv: https://arxiv.org/abs/1812.05586

Robust and High Performance Face Detector

https://arxiv.org/abs/1901.02350

DAFE-FD: Density Aware Feature Enrichment for Face Detection

  • arxiv: https://arxiv.org/abs/1901.05375

Improved Selective Refinement Network for Face Detection

  • intro: Chinese Academy of Sciences & JD AI Research
  • arxiv: https://arxiv.org/abs/1901.06651

Revisiting a single-stage method for face detection

  • arxiv: https://arxiv.org/abs/1902.01559

Detect Small Faces

Finding Tiny Faces

  • intro: CVPR 2017. CMU
  • project page: http://www.cs.cmu.edu/~peiyunh/tiny/index.html
  • arxiv: https://arxiv.org/abs/1612.04402
  • github(official, Matlab): https://github.com/peiyunh/tiny
  • github(inference-only): https://github.com/chinakook/hr101_mxnet
  • github: https://github.com/cydonia999/Tiny_Faces_in_Tensorflow

Detecting and counting tiny faces

  • intro: ENS Paris-Saclay. ExtendedTinyFaces
  • intro: Detecting and counting small objects - Analysis, review and application to counting
  • arxiv: https://arxiv.org/abs/1801.06504
  • github: https://github.com/alexattia/ExtendedTinyFaces

Seeing Small Faces from Robust Anchor’s Perspective

  • intro: CVPR 2018
  • arxiv: https://arxiv.org/abs/1802.09058

Face-MagNet: Magnifying Feature Maps to Detect Small Faces

  • intro: WACV 2018
  • keywords: Face Magnifier Network (Face-MageNet)
  • arxiv: https://arxiv.org/abs/1803.05258
  • github: https://github.com/po0ya/face-magnet

Robust Face Detection via Learning Small Faces on Hard Images

  • intro: Johns Hopkins University & Stanford University
  • arxiv: https://arxiv.org/abs/1811.11662
  • github: https://github.com/bairdzhang/smallhardface

SFA: Small Faces Attention Face Detector

  • intro: Jilin University
  • arxiv: https://arxiv.org/abs/1812.08402

Person Head Detection

Context-aware CNNs for person head detection

  • intro: ICCV 2015
  • project page: http://www.di.ens.fr/willow/research/headdetection/
  • arxiv: http://arxiv.org/abs/1511.07917
  • github: https://github.com/aosokin/cnn_head_detection

Detecting Heads using Feature Refine Net and Cascaded Multi-scale Architecture

  • arxiv: https://arxiv.org/abs/1803.09256

A Comparison of CNN-based Face and Head Detectors for Real-Time Video Surveillance Applications

  • https://arxiv.org/abs/1809.03336

FCHD: A fast and accurate head detector

  • arxiv: https://arxiv.org/abs/1809.08766
  • github(PyTorch, official): https://github.com/aditya-vora/FCHD-Fully-Convolutional-Head-Detector

Pedestrian Detection / People Detection

Pedestrian Detection aided by Deep Learning Semantic Tasks

  • intro: CVPR 2015
  • project page: http://mmlab.ie.cuhk.edu.hk/projects/TA-CNN/
  • arxiv: http://arxiv.org/abs/1412.0069

Deep Learning Strong Parts for Pedestrian Detection

  • intro: ICCV 2015. CUHK. DeepParts
  • intro: Achieving 11.89% average miss rate on Caltech Pedestrian Dataset
  • paper: http://personal.ie.cuhk.edu.hk/~pluo/pdf/tianLWTiccv15.pdf

Taking a Deeper Look at Pedestrians

  • intro: CVPR 2015
  • arxiv: https://arxiv.org/abs/1501.05790

Convolutional Channel Features

  • intro: ICCV 2015
  • arxiv: https://arxiv.org/abs/1504.07339
  • github: https://github.com/byangderek/CCF

End-to-end people detection in crowded scenes

  • arxiv: http://arxiv.org/abs/1506.04878
  • github: https://github.com/Russell91/reinspect
  • ipn: http://nbviewer.ipython.org/github/Russell91/ReInspect/blob/master/evaluation_reinspect.ipynb
  • youtube: https://www.youtube.com/watch?v=QeWl0h3kQ24

Learning Complexity-Aware Cascades for Deep Pedestrian Detection

  • intro: ICCV 2015
  • arxiv: https://arxiv.org/abs/1507.05348

Deep convolutional neural networks for pedestrian detection

  • arxiv: http://arxiv.org/abs/1510.03608
  • github: https://github.com/DenisTome/DeepPed

Scale-aware Fast R-CNN for Pedestrian Detection

  • arxiv: https://arxiv.org/abs/1510.08160

New algorithm improves speed and accuracy of pedestrian detection

  • blog: http://www.eurekalert.org/pub_releases/2016-02/uoc–nai020516.php

Pushing the Limits of Deep CNNs for Pedestrian Detection

  • intro: “set a new record on the Caltech pedestrian dataset, lowering the log-average miss rate from 11.7% to 8.9%”
  • arxiv: http://arxiv.org/abs/1603.04525

A Real-Time Deep Learning Pedestrian Detector for Robot Navigation

  • arxiv: http://arxiv.org/abs/1607.04436

A Real-Time Pedestrian Detector using Deep Learning for Human-Aware Navigation

  • arxiv: http://arxiv.org/abs/1607.04441

Is Faster R-CNN Doing Well for Pedestrian Detection?

  • intro: ECCV 2016
  • arxiv: http://arxiv.org/abs/1607.07032
  • github: https://github.com/zhangliliang/RPN_BF/tree/RPN-pedestrian

Unsupervised Deep Domain Adaptation for Pedestrian Detection

  • intro: ECCV Workshop 2016
  • arxiv: https://arxiv.org/abs/1802.03269

Reduced Memory Region Based Deep Convolutional Neural Network Detection

  • intro: IEEE 2016 ICCE-Berlin
  • arxiv: http://arxiv.org/abs/1609.02500

Fused DNN: A deep neural network fusion approach to fast and robust pedestrian detection

  • arxiv: https://arxiv.org/abs/1610.03466

Detecting People in Artwork with CNNs

  • intro: ECCV 2016 Workshops
  • arxiv: https://arxiv.org/abs/1610.08871

Multispectral Deep Neural Networks for Pedestrian Detection

  • intro: BMVC 2016 oral
  • arxiv: https://arxiv.org/abs/1611.02644

Box-level Segmentation Supervised Deep Neural Networks for Accurate and Real-time Multispectral Pedestrian Detection

  • arxiv: https://arxiv.org/abs/1902.05291

Deep Multi-camera People Detection

  • arxiv: https://arxiv.org/abs/1702.04593

Expecting the Unexpected: Training Detectors for Unusual Pedestrians with Adversarial Imposters

  • intro: CVPR 2017
  • project page: http://ml.cs.tsinghua.edu.cn:5000/publications/synunity/
  • arxiv: https://arxiv.org/abs/1703.06283
  • github(Tensorflow): https://github.com/huangshiyu13/RPNplus

What Can Help Pedestrian Detection?

  • intro: CVPR 2017. Tsinghua University & Peking University & Megvii Inc.
  • keywords: Faster R-CNN, HyperLearner
  • arxiv: https://arxiv.org/abs/1705.02757
  • paper: http://openaccess.thecvf.com/content_cvpr_2017/papers/Mao_What_Can_Help_CVPR_2017_paper.pdf

Illuminating Pedestrians via Simultaneous Detection & Segmentation

  • arxiv: https://arxiv.org/abs/1706.08564

Rotational Rectification Network for Robust Pedestrian Detection

  • intro: CMU & Volvo Construction
  • arxiv: https://arxiv.org/abs/1706.08917

STD-PD: Generating Synthetic Training Data for Pedestrian Detection in Unannotated Videos

  • intro: The University of North Carolina at Chapel Hill
  • arxiv: https://arxiv.org/abs/1707.09100

Too Far to See? Not Really! — Pedestrian Detection with Scale-aware Localization Policy

  • arxiv: https://arxiv.org/abs/1709.00235

Repulsion Loss: Detecting Pedestrians in a Crowd

  • arxiv: https://arxiv.org/abs/1711.07752

Aggregated Channels Network for Real-Time Pedestrian Detection

  • arxiv: https://arxiv.org/abs/1801.00476

Illumination-aware Faster R-CNN for Robust Multispectral Pedestrian Detection

  • intro: State Key Lab of CAD&CG, Zhejiang University
  • arxiv: https://arxiv.org/abs/1803.05347

Exploring Multi-Branch and High-Level Semantic Networks for Improving Pedestrian Detection

  • arxiv: https://arxiv.org/abs/1804.00872

Pedestrian-Synthesis-GAN: Generating Pedestrian Data in Real Scene and Beyond

  • arxiv: https://arxiv.org/abs/1804.02047

PCN: Part and Context Information for Pedestrian Detection with CNNs

  • intro: British Machine Vision Conference(BMVC) 2017
  • arxiv: https://arxiv.org/abs/1804.04483

Small-scale Pedestrian Detection Based on Somatic Topology Localization and Temporal Feature Aggregation

  • intro: ECCV 2018. Hikvision Research Institute
  • arxiv: https://arxiv.org/abs/1807.01438

Occlusion-aware R-CNN: Detecting Pedestrians in a Crowd

  • intro: ECCV 2018
  • arxiv: https://arxiv.org/abs/1807.08407

Multispectral Pedestrian Detection via Simultaneous Detection and Segmentation

  • intro: BMVC 2018
  • arxiv: https://arxiv.org/abs/1808.04818

Pedestrian Detection with Autoregressive Network Phases

  • intro: Michigan State University
  • arxiv: https://arxiv.org/abs/1812.00440

The Cross-Modality Disparity Problem in Multispectral Pedestrian Detection

-arxiv: https://arxiv.org/abs/1901.02645


Vehicle Detection

DAVE: A Unified Framework for Fast Vehicle Detection and Annotation

  • intro: ECCV 2016
  • arxiv: http://arxiv.org/abs/1607.04564

Evolving Boxes for fast Vehicle Detection

  • arxiv: https://arxiv.org/abs/1702.00254

Fine-Grained Car Detection for Visual Census Estimation

  • intro: AAAI 2016
  • arxiv: https://arxiv.org/abs/1709.02480

SINet: A Scale-insensitive Convolutional Neural Network for Fast Vehicle Detection

  • intro: IEEE Transactions on Intelligent Transportation Systems (T-ITS)
  • arxiv: https://arxiv.org/abs/1804.00433

Label and Sample: Efficient Training of Vehicle Object Detector from Sparsely Labeled Data

  • intro: UC Berkeley
  • arxiv: https://arxiv.org/abs/1808.08603

Domain Randomization for Scene-Specific Car Detection and Pose Estimation

  • arxiv:https://arxiv.org/abs/1811.05939

ShuffleDet: Real-Time Vehicle Detection Network in On-board Embedded UAV Imagery

  • intro: ECCV 2018, UAVision 2018
  • arxiv: https://arxiv.org/abs/1811.06318

Traffic-Sign Detection

Traffic-Sign Detection and Classification in the Wild

  • intro: CVPR 2016
  • project page(code+dataset): http://cg.cs.tsinghua.edu.cn/traffic-sign/
  • paper: http://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Zhu_Traffic-Sign_Detection_and_CVPR_2016_paper.pdf
  • code & model: http://cg.cs.tsinghua.edu.cn/traffic-sign/data_model_code/newdata0411.zip

Evaluating State-of-the-art Object Detector on Challenging Traffic Light Data

  • intro: CVPR 2017 workshop
  • paper: http://openaccess.thecvf.com/content_cvpr_2017_workshops/w9/papers/Jensen_Evaluating_State-Of-The-Art_Object_CVPR_2017_paper.pdf

Detecting Small Signs from Large Images

  • intro: IEEE Conference on Information Reuse and Integration (IRI) 2017 oral
  • arxiv: https://arxiv.org/abs/1706.08574

Localized Traffic Sign Detection with Multi-scale Deconvolution Networks

  • arxiv: https://arxiv.org/abs/1804.10428

Detecting Traffic Lights by Single Shot Detection

  • intro: ITSC 2018
  • arxiv: https://arxiv.org/abs/1805.02523

A Hierarchical Deep Architecture and Mini-Batch Selection Method For Joint Traffic Sign and Light Detection

  • intro: IEEE 15th Conference on Computer and Robot Vision
  • arxiv: https://arxiv.org/abs/1806.07987
  • demo: https://www.youtube.com/watch?v=_YmogPzBXOw&feature=youtu.be

Skeleton Detection

Object Skeleton Extraction in Natural Images by Fusing Scale-associated Deep Side Outputs

这里写图片描述

  • arxiv: http://arxiv.org/abs/1603.09446
  • github: https://github.com/zeakey/DeepSkeleton

DeepSkeleton: Learning Multi-task Scale-associated Deep Side Outputs for Object Skeleton Extraction in Natural Images

  • arxiv: http://arxiv.org/abs/1609.03659

SRN: Side-output Residual Network for Object Symmetry Detection in the Wild

  • intro: CVPR 2017
  • arxiv: https://arxiv.org/abs/1703.02243
  • github: https://github.com/KevinKecc/SRN

Hi-Fi: Hierarchical Feature Integration for Skeleton Detection

  • arxiv: https://arxiv.org/abs/1801.01849

Fruit Detection

Deep Fruit Detection in Orchards

  • arxiv: https://arxiv.org/abs/1610.03677

Image Segmentation for Fruit Detection and Yield Estimation in Apple Orchards

  • intro: The Journal of Field Robotics in May 2016
  • project page: http://confluence.acfr.usyd.edu.au/display/AGPub/
  • arxiv: https://arxiv.org/abs/1610.08120

Shadow Detection

Fast Shadow Detection from a Single Image Using a Patched Convolutional Neural Network

  • arxiv: https://arxiv.org/abs/1709.09283

A+D-Net: Shadow Detection with Adversarial Shadow Attenuation

  • arxiv: https://arxiv.org/abs/1712.01361

Stacked Conditional Generative Adversarial Networks for Jointly Learning Shadow Detection and Shadow Removal

  • arxiv: https://arxiv.org/abs/1712.02478

Direction-aware Spatial Context Features for Shadow Detection

  • intro: CVPR 2018
  • arxiv: https://arxiv.org/abs/1712.04142

Direction-aware Spatial Context Features for Shadow Detection and Removal

  • intro: The Chinese University of Hong Kong & The Hong Kong Polytechnic University
  • arxiv: https://arxiv.org/abs/1805.04635

Others Detection

Deep Deformation Network for Object Landmark Localization

  • arxiv: http://arxiv.org/abs/1605.01014

Fashion Landmark Detection in the Wild

  • intro: ECCV 2016
  • project page: http://personal.ie.cuhk.edu.hk/~lz013/projects/FashionLandmarks.html
  • arxiv: http://arxiv.org/abs/1608.03049
  • github(Caffe): https://github.com/liuziwei7/fashion-landmarks

Deep Learning for Fast and Accurate Fashion Item Detection

  • intro: Kuznech Inc.
  • intro: MultiBox and Fast R-CNN
  • paper: https://kddfashion2016.mybluemix.net/kddfashion_finalSubmissions/Deep Learning for Fast and Accurate Fashion Item Detection.pdf

OSMDeepOD - OSM and Deep Learning based Object Detection from Aerial Imagery (formerly known as “OSM-Crosswalk-Detection”)

这里写图片描述

  • github: https://github.com/geometalab/OSMDeepOD

Selfie Detection by Synergy-Constraint Based Convolutional Neural Network

  • intro: IEEE SITIS 2016
  • arxiv: https://arxiv.org/abs/1611.04357

Associative Embedding:End-to-End Learning for Joint Detection and Grouping

  • arxiv: https://arxiv.org/abs/1611.05424

Deep Cuboid Detection: Beyond 2D Bounding Boxes

  • intro: CMU & Magic Leap
  • arxiv: https://arxiv.org/abs/1611.10010

Automatic Model Based Dataset Generation for Fast and Accurate Crop and Weeds Detection

  • arxiv: https://arxiv.org/abs/1612.03019

Deep Learning Logo Detection with Data Expansion by Synthesising Context

  • arxiv: https://arxiv.org/abs/1612.09322

Scalable Deep Learning Logo Detection

  • arxiv: https://arxiv.org/abs/1803.11417

Pixel-wise Ear Detection with Convolutional Encoder-Decoder Networks

  • arxiv: https://arxiv.org/abs/1702.00307

Automatic Handgun Detection Alarm in Videos Using Deep Learning

  • arxiv: https://arxiv.org/abs/1702.05147
  • results: https://github.com/SihamTabik/Pistol-Detection-in-Videos

Objects as context for part detection

  • arxiv: https://arxiv.org/abs/1703.09529

Using Deep Networks for Drone Detection

  • intro: AVSS 2017
  • arxiv: https://arxiv.org/abs/1706.05726

Cut, Paste and Learn: Surprisingly Easy Synthesis for Instance Detection

  • intro: ICCV 2017
  • arxiv: https://arxiv.org/abs/1708.01642

Target Driven Instance Detection

  • arxiv: https://arxiv.org/abs/1803.04610

DeepVoting: An Explainable Framework for Semantic Part Detection under Partial Occlusion

  • arxiv: https://arxiv.org/abs/1709.04577

VPGNet: Vanishing Point Guided Network for Lane and Road Marking Detection and Recognition

  • intro: ICCV 2017
  • arxiv: https://arxiv.org/abs/1710.06288
  • github: https://github.com/SeokjuLee/VPGNet

Grab, Pay and Eat: Semantic Food Detection for Smart Restaurants

  • arxiv: https://arxiv.org/abs/1711.05128

ReMotENet: Efficient Relevant Motion Event Detection for Large-scale Home Surveillance Videos

  • intro: WACV 2018
  • arxiv: https://arxiv.org/abs/1801.02031

Deep Learning Object Detection Methods for Ecological Camera Trap Data

  • intro: Conference of Computer and Robot Vision. University of Guelph
  • arxiv: https://arxiv.org/abs/1803.10842

EL-GAN: Embedding Loss Driven Generative Adversarial Networks for Lane Detection

  • arxiv: https://arxiv.org/abs/1806.05525

Towards End-to-End Lane Detection: an Instance Segmentation Approach

  • arxiv: https://arxiv.org/abs/1802.05591
  • github: https://github.com/MaybeShewill-CV/lanenet-lane-detection

iCAN: Instance-Centric Attention Network for Human-Object Interaction Detection

  • intro: BMVC 2018
  • project page: https://gaochen315.github.io/iCAN/
  • arxiv: https://arxiv.org/abs/1808.10437
  • github: https://github.com/vt-vl-lab/iCAN

Densely Supervised Grasp Detector (DSGD)

  • https://arxiv.org/abs/1810.03962

Object Proposal

DeepProposal: Hunting Objects by Cascading Deep Convolutional Layers

  • arxiv: http://arxiv.org/abs/1510.04445
  • github: https://github.com/aghodrati/deepproposal

Scale-aware Pixel-wise Object Proposal Networks

  • intro: IEEE Transactions on Image Processing
  • arxiv: http://arxiv.org/abs/1601.04798

Attend Refine Repeat: Active Box Proposal Generation via In-Out Localization

  • intro: BMVC 2016. AttractioNet
  • arxiv: https://arxiv.org/abs/1606.04446
  • github: https://github.com/gidariss/AttractioNet

Learning to Segment Object Proposals via Recursive Neural Networks

  • arxiv: https://arxiv.org/abs/1612.01057

Learning Detection with Diverse Proposals

  • intro: CVPR 2017
  • keywords: differentiable Determinantal Point Process (DPP) layer, Learning Detection with Diverse Proposals (LDDP)
  • arxiv: https://arxiv.org/abs/1704.03533

ScaleNet: Guiding Object Proposal Generation in Supermarkets and Beyond

  • keywords: product detection
  • arxiv: https://arxiv.org/abs/1704.06752

Improving Small Object Proposals for Company Logo Detection

  • intro: ICMR 2017
  • arxiv: https://arxiv.org/abs/1704.08881

Open Logo Detection Challenge

  • intro: BMVC 2018
  • keywords: QMUL-OpenLogo
  • project page: https://qmul-openlogo.github.io/
  • arxiv: https://arxiv.org/abs/1807.01964

AttentionMask: Attentive, Efficient Object Proposal Generation Focusing on Small Objects

  • intro: ACCV 2018 oral
  • arxiv: https://arxiv.org/abs/1811.08728
  • github: https://github.com/chwilms/AttentionMask

Localization

Beyond Bounding Boxes: Precise Localization of Objects in Images

  • intro: PhD Thesis
  • homepage: http://www.eecs.berkeley.edu/Pubs/TechRpts/2015/EECS-2015-193.html
  • phd-thesis: http://www.eecs.berkeley.edu/Pubs/TechRpts/2015/EECS-2015-193.pdf
  • github(“SDS using hypercolumns”): https://github.com/bharath272/sds

Weakly Supervised Object Localization with Multi-fold Multiple Instance Learning

  • arxiv: http://arxiv.org/abs/1503.00949

Weakly Supervised Object Localization Using Size Estimates

  • arxiv: http://arxiv.org/abs/1608.04314

Active Object Localization with Deep Reinforcement Learning

  • intro: ICCV 2015
  • keywords: Markov Decision Process
  • arxiv: https://arxiv.org/abs/1511.06015

Localizing objects using referring expressions

  • intro: ECCV 2016
  • keywords: LSTM, multiple instance learning (MIL)
  • paper: http://www.umiacs.umd.edu/~varun/files/refexp-ECCV16.pdf
  • github: https://github.com/varun-nagaraja/referring-expressions

LocNet: Improving Localization Accuracy for Object Detection

  • intro: CVPR 2016 oral
  • arxiv: http://arxiv.org/abs/1511.07763
  • github: https://github.com/gidariss/LocNet

Learning Deep Features for Discriminative Localization

这里写图片描述

  • homepage: http://cnnlocalization.csail.mit.edu/
  • arxiv: http://arxiv.org/abs/1512.04150
  • github(Tensorflow): https://github.com/jazzsaxmafia/Weakly_detector
  • github: https://github.com/metalbubble/CAM
  • github: https://github.com/tdeboissiere/VGG16CAM-keras

ContextLocNet: Context-Aware Deep Network Models for Weakly Supervised Localization

这里写图片描述

  • intro: ECCV 2016
  • project page: http://www.di.ens.fr/willow/research/contextlocnet/
  • arxiv: http://arxiv.org/abs/1609.04331
  • github: https://github.com/vadimkantorov/contextlocnet

Ensemble of Part Detectors for Simultaneous Classification and Localization

  • arxiv: https://arxiv.org/abs/1705.10034

STNet: Selective Tuning of Convolutional Networks for Object Localization

  • arxiv: https://arxiv.org/abs/1708.06418

Soft Proposal Networks for Weakly Supervised Object Localization

  • intro: ICCV 2017
  • arxiv: https://arxiv.org/abs/1709.01829

Fine-grained Discriminative Localization via Saliency-guided Faster R-CNN

  • intro: ACM MM 2017
  • arxiv: https://arxiv.org/abs/1709.08295

Tutorials / Talks

Convolutional Feature Maps: Elements of efficient (and accurate) CNN-based object detection

  • slides: http://research.microsoft.com/en-us/um/people/kahe/iccv15tutorial/iccv2015_tutorial_convolutional_feature_maps_kaiminghe.pdf

Towards Good Practices for Recognition & Detection

  • intro: Hikvision Research Institute. Supervised Data Augmentation (SDA)
  • slides: http://image-net.org/challenges/talks/2016/Hikvision_at_ImageNet_2016.pdf

Work in progress: Improving object detection and instance segmentation for small objects

https://docs.google.com/presentation/d/1OTfGn6mLe1VWE8D0q6Tu_WwFTSoLGd4OF8WCYnOWcVo/edit#slide=id.g37418adc7a_0_229

Object Detection with Deep Learning: A Review

  • arxiv: https://arxiv.org/abs/1807.05511

Projects

Detectron

  • intro: FAIR’s research platform for object detection research, implementing popular algorithms like Mask R-CNN and RetinaNet.
  • github: https://github.com/facebookresearch/Detectron

TensorBox: a simple framework for training neural networks to detect objects in images

  • intro: “The basic model implements the simple and robust GoogLeNet-OverFeat algorithm. We additionally provide an implementation of the ReInspect algorithm”
  • github: https://github.com/Russell91/TensorBox

Object detection in torch: Implementation of some object detection frameworks in torch

  • github: https://github.com/fmassa/object-detection.torch

Using DIGITS to train an Object Detection network

  • github: https://github.com/NVIDIA/DIGITS/blob/master/examples/object-detection/README.md

FCN-MultiBox Detector

  • intro: Full convolution MultiBox Detector (like SSD) implemented in Torch.
  • github: https://github.com/teaonly/FMD.torch

KittiBox: A car detection model implemented in Tensorflow.

  • keywords: MultiNet
  • intro: KittiBox is a collection of scripts to train out model FastBox on the Kitti Object Detection Dataset
  • github: https://github.com/MarvinTeichmann/KittiBox

Deformable Convolutional Networks + MST + Soft-NMS

  • github: https://github.com/bharatsingh430/Deformable-ConvNets

How to Build a Real-time Hand-Detector using Neural Networks (SSD) on Tensorflow

  • blog: https://towardsdatascience.com/how-to-build-a-real-time-hand-detector-using-neural-networks-ssd-on-tensorflow-d6bac0e4b2ce
  • github: https://github.com//victordibia/handtracking

Metrics for object detection

  • intro: Most popular metrics used to evaluate object detection algorithms
  • github: https://github.com/rafaelpadilla/Object-Detection-Metrics

MobileNetv2-SSDLite

  • intro: Caffe implementation of SSD and SSDLite detection on MobileNetv2, converted from tensorflow.
  • github: https://github.com/chuanqi305/MobileNetv2-SSDLite

Leaderboard

Detection Results: VOC2012

  • intro: Competition “comp4” (train on additional data)
  • homepage: http://host.robots.ox.ac.uk:8080/leaderboard/displaylb.php?challengeid=11&compid=4

Tools

BeaverDam: Video annotation tool for deep learning training labels

https://github.com/antingshen/BeaverDam


Blogs

Convolutional Neural Networks for Object Detection

http://rnd.azoft.com/convolutional-neural-networks-object-detection/

Introducing automatic object detection to visual search (Pinterest)

  • keywords: Faster R-CNN
  • blog: https://engineering.pinterest.com/blog/introducing-automatic-object-detection-visual-search
  • demo: https://engineering.pinterest.com/sites/engineering/files/Visual Search V1 - Video.mp4
  • review: https://news.developer.nvidia.com/pinterest-introduces-the-future-of-visual-search/?mkt_tok=eyJpIjoiTnpaa01UWXpPRE0xTURFMiIsInQiOiJJRjcybjkwTmtmallORUhLOFFFODBDclFqUlB3SWlRVXJXb1MrQ013TDRIMGxLQWlBczFIeWg0TFRUdnN2UHY2ZWFiXC9QQVwvQzBHM3B0UzBZblpOSmUyU1FcLzNPWXI4cml2VERwTTJsOFwvOEk9In0%3D

Deep Learning for Object Detection with DIGITS

  • blog: https://devblogs.nvidia.com/parallelforall/deep-learning-object-detection-digits/

Analyzing The Papers Behind Facebook’s Computer Vision Approach

  • keywords: DeepMask, SharpMask, MultiPathNet
  • blog: https://adeshpande3.github.io/adeshpande3.github.io/Analyzing-the-Papers-Behind-Facebook’s-Computer-Vision-Approach/

Easily Create High Quality Object Detectors with Deep Learning

  • intro: dlib v19.2
  • blog: http://blog.dlib.net/2016/10/easily-create-high-quality-object.html

How to Train a Deep-Learned Object Detection Model in the Microsoft Cognitive Toolkit

  • blog: https://blogs.technet.microsoft.com/machinelearning/2016/10/25/how-to-train-a-deep-learned-object-detection-model-in-cntk/
  • github: https://github.com/Microsoft/CNTK/tree/master/Examples/Image/Detection/FastRCNN

Object Detection in Satellite Imagery, a Low Overhead Approach

  • part 1: https://medium.com/the-downlinq/object-detection-in-satellite-imagery-a-low-overhead-approach-part-i-cbd96154a1b7#.2csh4iwx9
  • part 2: https://medium.com/the-downlinq/object-detection-in-satellite-imagery-a-low-overhead-approach-part-ii-893f40122f92#.f9b7dgf64

You Only Look Twice — Multi-Scale Object Detection in Satellite Imagery With Convolutional Neural Networks

  • part 1: https://medium.com/the-downlinq/you-only-look-twice-multi-scale-object-detection-in-satellite-imagery-with-convolutional-neural-38dad1cf7571#.fmmi2o3of
  • part 2: https://medium.com/the-downlinq/you-only-look-twice-multi-scale-object-detection-in-satellite-imagery-with-convolutional-neural-34f72f659588#.nwzarsz1t

Faster R-CNN Pedestrian and Car Detection

  • blog: https://bigsnarf.wordpress.com/2016/11/07/faster-r-cnn-pedestrian-and-car-detection/
  • ipn: https://gist.github.com/bigsnarfdude/2f7b2144065f6056892a98495644d3e0#file-demo_faster_rcnn_notebook-ipynb
  • github: https://github.com/bigsnarfdude/Faster-RCNN_TF

Small U-Net for vehicle detection

  • blog: https://medium.com/@vivek.yadav/small-u-net-for-vehicle-detection-9eec216f9fd6#.md4u80kad

Region of interest pooling explained

  • blog: https://deepsense.io/region-of-interest-pooling-explained/
  • github: https://github.com/deepsense-io/roi-pooling

Supercharge your Computer Vision models with the TensorFlow Object Detection API

  • blog: https://research.googleblog.com/2017/06/supercharge-your-computer-vision-models.html
  • github: https://github.com/tensorflow/models/tree/master/object_detection

Understanding SSD MultiBox — Real-Time Object Detection In Deep Learning

https://towardsdatascience.com/understanding-ssd-multibox-real-time-object-detection-in-deep-learning-495ef744fab

One-shot object detection

http://machinethink.net/blog/object-detection/

An overview of object detection: one-stage methods

https://www.jeremyjordan.me/object-detection-one-stage/

deep learning object detection

  • intro: A paper list of object detection using deep learning.
  • github: https://github.com/hoya012/deep_learning_object_detection

转载于:https://www.cnblogs.com/SanguineBoy/p/11205735.html

你可能感兴趣的:(php,c/c++,matlab,object,detect,faster,R-CNN,SSD,YOLO,MTCNN,目标检测)