Java并发编程 - 第九章 Java 中的线程池

前言:

Java 中的线程池是运用场景最多的并发框架,几乎所有需要异步或并发执行任务的程序都可以使用线程池。在开发过程中,合理地使用线程池能够带来 3 个好处。

  • 降低资源消耗。通过重复利用已创建的线程降低线程创建和销毁造成的消耗。
  • 提高响应速度。当任务到达时,任务可以不需要等到线程创建就能立即执行。
  • 提高线程的可管理性。线程是稀缺资源,如果无限制地创建,不仅会消耗系统资源,

还会降低系统的稳定性,使用线程池可以进行统一分配、调优和监控。但是,要做到合理利用线程池,必须对其实现原理了如指掌。

一、线程池的实现原理

当向线程池提交一个任务之后,线程池是如何处理这个任务的呢?本节来看一下线程池的主要处理流程,处理流程图如图所示。

Java并发编程 - 第九章 Java 中的线程池_第1张图片
从图中可以看出,当提交一个新任务到线程池时,线程池的处理流程如下。

  1. 线程池判断核心线程池里的线程是否都在执行任务。如果不是,则创建一个新的工作线程来执行任务。如果核心线程池里的线程都在执行任务,则进入下个流程。
  2. 线程池判断工作队列是否已经满。如果工作队列没有满,则将新提交的任务存储在这个工作队列里。如果工作队列满了,则进入下个流程。
  3. 线程池判断线程池的线程是否都处于工作状态。如果没有,则创建一个新的工作线程来执行任务。如果已经满了,则交给饱和策略来处理这个任务。

ThreadPoolExecutor 执行 execute() 方法的示意图,如图所示。

Java并发编程 - 第九章 Java 中的线程池_第2张图片
ThreadPoolExecutor 执行 execute 方法分下面 4 种情况。

  1. 如果当前运行的线程少于 corePoolSize,则创建新线程来执行任务(注意,执行这一步骤需要获取全局锁)。
  2. 如果运行的线程等于或多于 corePoolSize,则将任务加入 BlockingQueue。
  3. 如果无法将任务加入 BlockingQueue(队列已满),则创建新的线程来处理任务(注意,执行这一步骤需要获取全局锁)。
  4. 如果创建新线程将使当前运行的线程超出 maximumPoolSize,任务将被拒绝,并调用 RejectedExecutionHandler.rejectedExecution() 方法。

ThreadPoolExecutor 采取上述步骤的总体设计思路,是为了在执行 execute() 方法时,尽可能地避免获取全局锁(那将会是一个严重的可伸缩瓶颈)。在 ThreadPoolExecutor 完成预热之后(当前运行的线程数大于等于 corePoolSize),几乎所有的 execute() 方法调用都是执行步骤 2,而步骤 2 不需要获取全局锁。

源码分析:上面的流程分析让我们很直观地了解了线程池的工作原理,让我们再通过源代码来看看是如何实现的,线程池执行任务的方法如下。

public void execute(Runnable command) {
     
	if (command == null)
		throw new NullPointerException();
	// 如果线程数小于基本线程数,则创建线程并执行当前任务
	if (poolSize >= corePoolSize || !addIfUnderCorePoolSize(command)) {
     
		// 如线程数大于等于基本线程数或线程创建失败,则将当前任务放到工作队列中。
		if (runState == RUNNING && workQueue.offer(command)) {
     
			if (runState != RUNNING || poolSize == 0)
				ensureQueuedTaskHandled(command);
		}
		// 如果线程池不处于运行中或任务无法放入队列,并且当前线程数量小于最大允许的线程数量
		// 则创建一个线程执行任务。
		else if (!addIfUnderMaximumPoolSize(command))
			// 抛出RejectedExecutionException异常
			reject(command); // is shutdown or saturated
	}
}

工作线程:线程池创建线程时,会将线程封装成工作线程 Worker,Worker 在执行完任务后,还会循环获取工作队列里的任务来执行。我们可以从 Worker 类的 run() 方法里看到这点。

public void run() {
     
	try {
     
		Runnable task = firstTask;
		firstTask = null;
		while (task != null || (task = getTask()) != null) {
     
			runTask(task);
			task = null;
		}
	} finally {
     
		workerDone(this);
	}
}

ThreadPoolExecutor 中线程执行任务的示意图如图所示。

Java并发编程 - 第九章 Java 中的线程池_第3张图片
线程池中的线程执行任务分两种情况,如下。

  1. 在 execute() 方法中创建一个线程时,会让这个线程执行当前任务。
  2. 这个线程执行完上图中1的任务后,会反复从 BlockingQueue 获取任务来执行。

二、线程池的使用

2.1 线程池的创建

我们可以通过 ThreadPoolExecutor 来创建一个线程池。

new ThreadPoolExecutor(corePoolSize, maximumPoolSize, keepAliveTime, milliseconds, runnableTaskQueue, handler);

创建一个线程池时需要输入几个参数,如下。

  1. corePoolSize(线程池的基本大小):当提交一个任务到线程池时,线程池会创建一个线程来执行任务,即使其他空闲的基本线程能够执行新任务也会创建线程,等到需要执行的任务数大于线程池基本大小时就不再创建。如果调用了线程池的 prestartAllCoreThreads() 方法,线程池会提前创建并启动所有基本线程。

  2. runnableTaskQueue(任务队列):用于保存等待执行的任务的阻塞队列。可以选择以下几个阻塞队列。

    · ArrayBlockingQueue:是一个基于数组结构的有界阻塞队列,此队列按 FIFO(先进先出)原则对元素进行排序。

    · LinkedBlockingQueue:一个基于链表结构的阻塞队列,此队列按 FIFO 排序元素,吞吐量通常要高于 ArrayBlockingQueue。静态工厂方法 Executors.newFixedThreadPool() 使用了这个队列。

    · SynchronousQueue:一个不存储元素的阻塞队列。每个插入操作必须等到另一个线程调用移除操作,否则插入操作一直处于阻塞状态,吞吐量通常要高于 LinkedBlockingQueue,静态工厂方法 Executors.newCachedThreadPool() 使用了这个队列。

    · PriorityBlockingQueue:一个具有优先级的无界阻塞队列。

  3. maximumPoolSize(线程池最大数量):线程池允许创建的最大线程数。如果队列满了,并且已创建的线程数小于最大线程数,则线程池会再创建新的线程执行任务。值得注意的是,如果使用了无界的任务队列这个参数就没什么效果。

  4. ThreadFactory:用于设置创建线程的工厂,可以通过线程工厂给每个创建出来的线程设置更有意义的名字。使用开源框架 guava 提供的 ThreadFactoryBuilder 可以快速给线程池里的线程设置有意义的名字,代码如下。

    new ThreadFactoryBuilder().setNameFormat("XX-task-%d").build();
    
  5. RejectedExecutionHandler(饱和策略):当队列和线程池都满了,说明线程池处于饱和状态,那么必须采取一种策略处理提交的新任务。这个策略默认情况下是 AbortPolicy,表示无法处理新任务时抛出异常。在 JDK 1.5 中 Java 线程池框架提供了以下 4 种策略。

    · AbortPolicy:直接抛出异常。

    · CallerRunsPolicy:只用调用者所在线程来运行任务。

    · DiscardOldestPolicy:丢弃队列里最近的一个任务,并执行当前任务。

    · DiscardPolicy:不处理,丢弃掉。

    当然,也可以根据应用场景需要来实现 RejectedExecutionHandler 接口自定义策略。如记录日志或持久化存储不能处理的任务。

  6. keepAliveTime(线程活动保持时间):线程池的工作线程空闲后,保持存活的时间。所以,如果任务很多,并且每个任务执行的时间比较短,可以调大时间,提高线程的利用率。

  7. TimeUnit(线程活动保持时间的单位):可选的单位有天(DAYS)、小时(HOURS)、分钟(MINUTES)、毫秒(MILLISECONDS)、微秒(MICROSECONDS,千分之一毫秒)和纳秒(NANOSECONDS,千分之一微秒)。

2.2 向线程池提交任务

可以使用两个方法向线程池提交任务,分别为 execute() 和 submit() 方法。

execute() 方法用于提交不需要返回值的任务,所以无法判断任务是否被线程池执行成功。通过以下代码可知 execute() 方法输入的任务是一个 Runnable 类的实例。

threadsPool.execute(new Runnable() {
     
	@Override
	public void run() {
     
		// TODO Auto-generated method stub
	}
});

submit() 方法用于提交需要返回值的任务。线程池会返回一个 future 类型的对象,通过这个 future 对象可以判断任务是否执行成功,并且可以通过 future 的 get() 方法来获取返回值,get() 方法会阻塞当前线程直到任务完成,而使用 get(long timeout,TimeUnit unit)方法则会阻塞当前线程一段时间后立即返回,这时候有可能任务没有执行完。

Future<Object> future = executor.submit(harReturnValuetask);
try {
     
	Object s = future.get();
} catch (InterruptedException e) {
     
	// 处理中断异常
} catch (ExecutionException e) {
     
	// 处理无法执行任务异常
} finally {
     
	// 关闭线程池
	executor.shutdown();
}

2.3 关闭线程池

可以通过调用线程池的 shutdown 或 shutdownNow 方法来关闭线程池。它们的原理是遍历线程池中的工作线程,然后逐个调用线程的 interrupt 方法来中断线程,所以无法响应中断的任务可能永远无法终止。但是它们存在一定的区别,shutdownNow 首先将线程池的状态设置成 STOP,然后尝试停止所有的正在执行或暂停任务的线程,并返回等待执行任务的列表,而 shutdown 只是将线程池的状态设置成 SHUTDOWN 状态,然后中断所有没有正在执行任务的线程。

只要调用了这两个关闭方法中的任意一个,isShutdown 方法就会返回 true。当所有的任务都已关闭后,才表示线程池关闭成功,这时调用 isTerminaed 方法会返回 true。至于应该调用哪一种方法来关闭线程池,应该由提交到线程池的任务特性决定,通常调用 shutdown 方法来关闭线程池,如果任务不一定要执行完,则可以调用 shutdownNow 方法。

2.4 合理地配置线程池

要想合理地配置线程池,就必须首先分析任务特性,可以从以下几个角度来分析。

  • 任务的性质:CPU 密集型任务、IO 密集型任务和混合型任务。
  • 任务的优先级:高、中和低。
  • 任务的执行时间:长、中和短。
  • 任务的依赖性:是否依赖其他系统资源,如数据库连接。

性质不同的任务可以用不同规模的线程池分开处理。CPU 密集型任务应配置尽可能小的线程,如配置 Ncpu+1 个线程的线程池。由于 IO 密集型任务线程并不是一直在执行任务,则应配置尽可能多的线程,如 2*Ncpu。混合型的任务,如果可以拆分,将其拆分成一个 CPU 密集型任务和一个 IO 密集型任务,只要这两个任务执行的时间相差不是太大,那么分解后执行的吞吐量将高于串行执行的吞吐量。如果这两个任务执行时间相差太大,则没必要进行分解。可以通过 Runtime.getRuntime().availableProcessors() 方法获得当前设备的 CPU 个数。

优先级不同的任务可以使用优先级队列 PriorityBlockingQueue 来处理。它可以让优先级高的任务先执行。

注意:如果一直有优先级高的任务提交到队列里,那么优先级低的任务可能永远不能执行。

执行时间不同的任务可以交给不同规模的线程池来处理,或者可以使用优先级队列,让执行时间短的任务先执行。

依赖数据库连接池的任务,因为线程提交 SQL 后需要等待数据库返回结果,等待的时间越长,则 CPU 空闲时间就越长,那么线程数应该设置得越大,这样才能更好地利用 CPU。

建议使用有界队列。有界队列能增加系统的稳定性和预警能力,可以根据需要设大一点儿,比如几千。有一次,我们系统里后台任务线程池的队列和线程池全满了,不断抛出抛弃任务的异常,通过排查发现是数据库出现了问题,导致执行 SQL 变得非常缓慢,因为后台任务线程池里的任务全是需要向数据库查询和插入数据的,所以导致线程池里的工作线程全部阻塞,任务积压在线程池里。如果当时我们设置成无界队列,那么线程池的队列就会越来越多,有可能会撑满内存,导致整个系统不可用,而不只是后台任务出现问题。当然,我们的系统所有的任务是用单独的服务器部署的,我们使用不同规模的线程池完成不同类型的任务,但是出现这样问题时也会影响到其他任务。

2.5 线程池的监控

如果在系统中大量使用线程池,则有必要对线程池进行监控,方便在出现问题时,可以根据线程池的使用状况快速定位问题。可以通过线程池提供的参数进行监控,在监控线程池的时候可以使用以下属性。

  • taskCount:线程池需要执行的任务数量。
  • completedTaskCount:线程池在运行过程中已完成的任务数量,小于或等于 taskCount。
  • largestPoolSize:线程池里曾经创建过的最大线程数量。通过这个数据可以知道线程池是否曾经满过。如该数值等于线程池的最大大小,则表示线程池曾经满过。
  • getPoolSize:线程池的线程数量。如果线程池不销毁的话,线程池里的线程不会自动销毁,所以这个大小只增不减。
  • getActiveCount:获取活动的线程数。

通过扩展线程池进行监控。可以通过继承线程池来自定义线程池,重写线程池的 beforeExecute、afterExecute 和 terminated 方法,也可以在任务执行前、执行后和线程池关闭前执行一些代码来进行监控。例如,监控任务的平均执行时间、最大执行时间和最小执行时间等。这几个方法在线程池里是空方法。

protected void beforeExecute(Thread t, Runnable r) {
      }

你可能感兴趣的:(Java并发编程,队列,java,数据库,多线程,python)