1-Pandas数据介绍--数据分析

Pandas数据分析


import pandas as pd

df = pd.read_csv('C:/JupyterWork/data/titanic.csv')

df
PassengerId	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked
0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500	NaN	S
1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th...	female	38.0	1	0	PC 17599	71.2833	C85	C
2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	7.9250	NaN	S
3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53.1000	C123	S
4	5	0	3	Allen, Mr. William Henry	male	35.0	0	0	373450	8.0500	NaN	S
5	6	0	3	Moran, Mr. James	male	NaN	0	0	330877	8.4583	NaN	Q
6	7	0	1	McCarthy, Mr. Timothy J	male	54.0	0	0	17463	51.8625	E46	S
7	8	0	3	Palsson, Master. Gosta Leonard	male	2.0	3	1	349909	21.0750	NaN	S
8	9	1	3	Johnson, Mrs. Oscar W (Elisabeth Vilhelmina Berg)	female	27.0	0	2	347742	11.1333	NaN	S
9	10	1	2	Nasser, Mrs. Nicholas (Adele Achem)	female	14.0	1	0	237736	30.0708	NaN	C
10	11	1	3	Sandstrom, Miss. Marguerite Rut	female	4.0	1	1	PP 9549	16.7000	G6	S
11	12	1	1	Bonnell, Miss. Elizabeth	female	58.0	0	0	113783	26.5500	C103	S
12	13	0	3	Saundercock, Mr. William Henry	male	20.0	0	0	A/5. 2151	8.0500	NaN	S
13	14	0	3	Andersson, Mr. Anders Johan	male	39.0	1	5	347082	31.2750	NaN	S
14	15	0	3	Vestrom, Miss. Hulda Amanda Adolfina	female	14.0	0	0	350406	7.8542	NaN	S
15	16	1	2	Hewlett, Mrs. (Mary D Kingcome)	female	55.0	0	0	248706	16.0000	NaN	S
16	17	0	3	Rice, Master. Eugene	male	2.0	4	1	382652	29.1250	NaN	Q
17	18	1	2	Williams, Mr. Charles Eugene	male	NaN	0	0	244373	13.0000	NaN	S
18	19	0	3	Vander Planke, Mrs. Julius (Emelia Maria Vande...	female	31.0	1	0	345763	18.0000	NaN	S
19	20	1	3	Masselmani, Mrs. Fatima	female	NaN	0	0	2649	7.2250	NaN	C
20	21	0	2	Fynney, Mr. Joseph J	male	35.0	0	0	239865	26.0000	NaN	S
21	22	1	2	Beesley, Mr. Lawrence	male	34.0	0	0	248698	13.0000	D56	S
22	23	1	3	McGowan, Miss. Anna "Annie"	female	15.0	0	0	330923	8.0292	NaN	Q
23	24	1	1	Sloper, Mr. William Thompson	male	28.0	0	0	113788	35.5000	A6	S
24	25	0	3	Palsson, Miss. Torborg Danira	female	8.0	3	1	349909	21.0750	NaN	S
25	26	1	3	Asplund, Mrs. Carl Oscar (Selma Augusta Emilia...	female	38.0	1	5	347077	31.3875	NaN	S
26	27	0	3	Emir, Mr. Farred Chehab	male	NaN	0	0	2631	7.2250	NaN	C
27	28	0	1	Fortune, Mr. Charles Alexander	male	19.0	3	2	19950	263.0000	C23 C25 C27	S
28	29	1	3	O'Dwyer, Miss. Ellen "Nellie"	female	NaN	0	0	330959	7.8792	NaN	Q
29	30	0	3	Todoroff, Mr. Lalio	male	NaN	0	0	349216	7.8958	NaN	S
...	...	...	...	...	...	...	...	...	...	...	...	...
861	862	0	2	Giles, Mr. Frederick Edward	male	21.0	1	0	28134	11.5000	NaN	S
862	863	1	1	Swift, Mrs. Frederick Joel (Margaret Welles Ba...	female	48.0	0	0	17466	25.9292	D17	S
863	864	0	3	Sage, Miss. Dorothy Edith "Dolly"	female	NaN	8	2	CA. 2343	69.5500	NaN	S
864	865	0	2	Gill, Mr. John William	male	24.0	0	0	233866	13.0000	NaN	S
865	866	1	2	Bystrom, Mrs. (Karolina)	female	42.0	0	0	236852	13.0000	NaN	S
866	867	1	2	Duran y More, Miss. Asuncion	female	27.0	1	0	SC/PARIS 2149	13.8583	NaN	C
867	868	0	1	Roebling, Mr. Washington Augustus II	male	31.0	0	0	PC 17590	50.4958	A24	S
868	869	0	3	van Melkebeke, Mr. Philemon	male	NaN	0	0	345777	9.5000	NaN	S
869	870	1	3	Johnson, Master. Harold Theodor	male	4.0	1	1	347742	11.1333	NaN	S
870	871	0	3	Balkic, Mr. Cerin	male	26.0	0	0	349248	7.8958	NaN	S
871	872	1	1	Beckwith, Mrs. Richard Leonard (Sallie Monypeny)	female	47.0	1	1	11751	52.5542	D35	S
872	873	0	1	Carlsson, Mr. Frans Olof	male	33.0	0	0	695	5.0000	B51 B53 B55	S
873	874	0	3	Vander Cruyssen, Mr. Victor	male	47.0	0	0	345765	9.0000	NaN	S
874	875	1	2	Abelson, Mrs. Samuel (Hannah Wizosky)	female	28.0	1	0	P/PP 3381	24.0000	NaN	C
875	876	1	3	Najib, Miss. Adele Kiamie "Jane"	female	15.0	0	0	2667	7.2250	NaN	C
876	877	0	3	Gustafsson, Mr. Alfred Ossian	male	20.0	0	0	7534	9.8458	NaN	S
877	878	0	3	Petroff, Mr. Nedelio	male	19.0	0	0	349212	7.8958	NaN	S
878	879	0	3	Laleff, Mr. Kristo	male	NaN	0	0	349217	7.8958	NaN	S
879	880	1	1	Potter, Mrs. Thomas Jr (Lily Alexenia Wilson)	female	56.0	0	1	11767	83.1583	C50	C
880	881	1	2	Shelley, Mrs. William (Imanita Parrish Hall)	female	25.0	0	1	230433	26.0000	NaN	S
881	882	0	3	Markun, Mr. Johann	male	33.0	0	0	349257	7.8958	NaN	S
882	883	0	3	Dahlberg, Miss. Gerda Ulrika	female	22.0	0	0	7552	10.5167	NaN	S
883	884	0	2	Banfield, Mr. Frederick James	male	28.0	0	0	C.A./SOTON 34068	10.5000	NaN	S
884	885	0	3	Sutehall, Mr. Henry Jr	male	25.0	0	0	SOTON/OQ 392076	7.0500	NaN	S
885	886	0	3	Rice, Mrs. William (Margaret Norton)	female	39.0	0	5	382652	29.1250	NaN	Q
886	887	0	2	Montvila, Rev. Juozas	male	27.0	0	0	211536	13.0000	NaN	S
887	888	1	1	Graham, Miss. Margaret Edith	female	19.0	0	0	112053	30.0000	B42	S
888	889	0	3	Johnston, Miss. Catherine Helen "Carrie"	female	NaN	1	2	W./C. 6607	23.4500	NaN	S
889	890	1	1	Behr, Mr. Karl Howell	male	26.0	0	0	111369	30.0000	C148	C
890	891	0	3	Dooley, Mr. Patrick	male	32.0	0	0	370376	7.7500	NaN	Q
891 rows × 12 columns

head()方法默认显示5条数据,可以通过输入数字来控制显示条数


df.head()
PassengerId	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked
0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500	NaN	S
1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th...	female	38.0	1	0	PC 17599	71.2833	C85	C
2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	7.9250	NaN	S
3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53.1000	C123	S
4	5	0	3	Allen, Mr. William Henry	male	35.0	0	0	373450	8.0500	NaN	S

df.head(10)
PassengerId	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked
0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500	NaN	S
1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th...	female	38.0	1	0	PC 17599	71.2833	C85	C
2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	7.9250	NaN	S
3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53.1000	C123	S
4	5	0	3	Allen, Mr. William Henry	male	35.0	0	0	373450	8.0500	NaN	S
5	6	0	3	Moran, Mr. James	male	NaN	0	0	330877	8.4583	NaN	Q
6	7	0	1	McCarthy, Mr. Timothy J	male	54.0	0	0	17463	51.8625	E46	S
7	8	0	3	Palsson, Master. Gosta Leonard	male	2.0	3	1	349909	21.0750	NaN	S
8	9	1	3	Johnson, Mrs. Oscar W (Elisabeth Vilhelmina Berg)	female	27.0	0	2	347742	11.1333	NaN	S
9	10	1	2	Nasser, Mrs. Nicholas (Adele Achem)	female	14.0	1	0	237736	30.0708	NaN	C
.info()返回数据当前的信息


df.info()

RangeIndex: 891 entries, 0 to 890
Data columns (total 12 columns):
PassengerId    891 non-null int64
Survived       891 non-null int64
Pclass         891 non-null int64
Name           891 non-null object
Sex            891 non-null object
Age            714 non-null float64
SibSp          891 non-null int64
Parch          891 non-null int64
Ticket         891 non-null object
Fare           891 non-null float64
Cabin          204 non-null object
Embarked       889 non-null object
dtypes: float64(2), int64(5), object(5)
memory usage: 83.6+ KB

df.index
RangeIndex(start=0, stop=891, step=1)

df.columns
Index(['PassengerId', 'Survived', 'Pclass', 'Name', 'Sex', 'Age', 'SibSp',
       'Parch', 'Ticket', 'Fare', 'Cabin', 'Embarked'],
      dtype='object')
dtypes 查看数据类型


df.dtypes
PassengerId      int64
Survived         int64
Pclass           int64
Name            object
Sex             object
Age            float64
SibSp            int64
Parch            int64
Ticket          object
Fare           float64
Cabin           object
Embarked        object
dtype: object
values 查看数值


df.values
array([[1, 0, 3, ..., 7.25, nan, 'S'],
       [2, 1, 1, ..., 71.2833, 'C85', 'C'],
       [3, 1, 3, ..., 7.925, nan, 'S'],
       ...,
       [889, 0, 3, ..., 23.45, nan, 'S'],
       [890, 1, 1, ..., 30.0, 'C148', 'C'],
       [891, 0, 3, ..., 7.75, nan, 'Q']], dtype=object)
创建Dataframe类型数据


data = {'country':['a1','a2','a3'],
       'population':[11,12,13]}
df_data = pd.DataFrame(data)
df_data
country	population
0	a1	11
1	a2	12
2	a3	13

df_data.info()

RangeIndex: 3 entries, 0 to 2
Data columns (total 2 columns):
country       3 non-null object
population    3 non-null int64
dtypes: int64(1), object(1)
memory usage: 128.0+ bytes
指定查看数据中某一列数据


df['Age'].head(10)
0    22.0
1    38.0
2    26.0
3    35.0
4    35.0
5     NaN
6    54.0
7     2.0
8    27.0
9    14.0
Name: Age, dtype: float64
Series数据结构:dataFrame中的一行\一列数据拿出来就是一个Series数据


df['Age'][:6]
0    22.0
1    38.0
2    26.0
3    35.0
4    35.0
5     NaN
Name: Age, dtype: float64
更改索引名称:将数据中Name列名称设置为行索引名称


df = df.set_index('Name')
df['Age'][:6]
Name
Braund, Mr. Owen Harris                                22.0
Cumings, Mrs. John Bradley (Florence Briggs Thayer)    38.0
Heikkinen, Miss. Laina                                 26.0
Futrelle, Mrs. Jacques Heath (Lily May Peel)           35.0
Allen, Mr. William Henry                               35.0
Moran, Mr. James                                        NaN
Name: Age, dtype: float64
根据索引名称获取对应的值


age = df['Age']

age['Braund, Mr. Owen Harris']
22.0
数据进行运算


age = age+10
age[:6]
Name
Braund, Mr. Owen Harris                                42.0
Cumings, Mrs. John Bradley (Florence Briggs Thayer)    58.0
Heikkinen, Miss. Laina                                 46.0
Futrelle, Mrs. Jacques Heath (Lily May Peel)           55.0
Allen, Mr. William Henry                               55.0
Moran, Mr. James                                        NaN
Name: Age, dtype: float64

age.mean()
49.69911764705882

age.min()
20.42
.describe()显示数据统计指标


df.describe()
PassengerId	Survived	Pclass	Age	SibSp	Parch	Fare
count	891.000000	891.000000	891.000000	714.000000	891.000000	891.000000	891.000000
mean	446.000000	0.383838	2.308642	29.699118	0.523008	0.381594	32.204208
std	257.353842	0.486592	0.836071	14.526497	1.102743	0.806057	49.693429
min	1.000000	0.000000	1.000000	0.420000	0.000000	0.000000	0.000000
25%	223.500000	0.000000	2.000000	20.125000	0.000000	0.000000	7.910400
50%	446.000000	0.000000	3.000000	28.000000	0.000000	0.000000	14.454200
75%	668.500000	1.000000	3.000000	38.000000	1.000000	0.000000	31.000000
max	891.000000	1.000000	3.000000	80.000000	8.000000	6.000000	512.329200

​

你可能感兴趣的:(python大数据分析)