在关系型数据库中,可以实现基于表上各种各样的查询,以及通过投影来返回指定的列。对于NoSQL mongoDB而言,所有能够在单表上完成的查询,在mongoDB中也可以完全胜任。除此之外,由于mongoDB支持基于文档嵌套以及数组,因此mongoDB也可以实现基于嵌套文档和数组的查询。具体见下文描述。
预备热身
Linux下快速安装MongoDB
Windows平台下安装MongoDB
mongoDB 启动与停止
mongo shell连接到mongoDB及shell提示符下执行js脚本
mongoDB简介及关键特性
SQL与mongoDB对比及映射
db.collection.find( , )
db.collection.findOne() //仅仅返回单个文档,相当于使用limit
查询的过滤条件
投影,即哪些列需要返回
对于查询的结果可以添加limits, skips, sort 等方式控制返回的结果集
缺省情况下,在mongo shell中对于未使用将结果集返回给变量的情形下,仅返回前20条记录
注:本文描述中有些地方使用到了文档的键值对,称为键和值,有些地方称为列,是一个概念
//演示环境
db.version()
3.2.9
//插入演示数据
db.users.insertMany(
[
{
_id: 1,
name: "sue",
age: 19,
type: 1,
status: "P",
favorites: { artist: "Picasso", food: "pizza" },
finished: [ 17, 3 ],
badges: [ "blue", "black" ],
points: [
{ points: 85, bonus: 20 },
{ points: 85, bonus: 10 }
]
},
{
_id: 2,
name: "bob",
age: 42,
type: 1,
status: "A",
favorites: { artist: "Miro", food: "meringue" },
finished: [ 11, 25 ],
badges: [ "green" ],
points: [
{ points: 85, bonus: 20 },
{ points: 64, bonus: 12 }
]
},
{
_id: 3,
name: "ahn",
age: 22,
type: 2,
status: "A",
favorites: { artist: "Cassatt", food: "cake" },
finished: [ 6 ],
badges: [ "blue", "red" ],
points: [
{ points: 81, bonus: 8 },
{ points: 55, bonus: 20 }
]
},
{
_id: 4,
name: "xi",
age: 34, //Author : Leshami
type: 2, //Blog : http://blog.csdn.net/leshami
status: "D",
favorites: { artist: "Chagall", food: "chocolate" },
finished: [ 5, 11 ],
badges: [ "red", "black" ],
points: [
{ points: 53, bonus: 15 },
{ points: 51, bonus: 15 }
]
},
{
_id: 5,
name: "xyz",
age: 23,
type: 2,
status: "D",
favorites: { artist: "Noguchi", food: "nougat" },
finished: [ 14, 6 ],
badges: [ "orange" ],
points: [
{ points: 71, bonus: 20 }
]
},
{
_id: 6,
name: "abc",
age: 43,
type: 1,
status: "A",
favorites: { food: "pizza", artist: "Picasso" },
finished: [ 18, 12 ],
badges: [ "black", "blue" ],
points: [
{ points: 78, bonus: 8 },
{ points: 57, bonus: 7 }
]
}
]
)
//查询所有文档,文档太多,此处及以下演示查询结果省略
db.users.find( {} ) //与方式等价于db.users.find()
db.users.findOne( {} ) //查询单条记录
//等值查询,{
//基于运算符的查询,{
//等值匹配内嵌文档
db.users.find( { favorites: { artist: "Picasso", food: "pizza" } } )
//等值匹配内嵌文档的特定键值,通过"键.成员名:值"的方式来进行
db.users.find( { "favorites.artist": "Picasso" } )
//查询数组元素 //查询数组badges中包含black的文档
db.users.find( { badges: "black" } )
//匹配一个特定的数组元素 //查询数组badges中第一个元素为black的文档
db.users.find( { "badges.0": "black" } ) //此处0表示数组的下标
//匹配单个数组元素满足条件 //查询数组finished至少有一个元素的值大于15且小于20的文档
db.users.find( { finished: { $elemMatch: { $gt: 15, $lt: 20 } } } )
//匹配混合数组元素满足条件 //查询数组finished中任意的一个元素大于15,且另外一个元素小于20
db.users.find( { finished: { $gt: 15, $lt: 20 } } ) //或者这个元素既大于15又小于20的文档
//查询数组内嵌文档 //查询数组points元素1内嵌文档键points的值小于等于55的文档
db.users.find( { 'points.0.points': { $lte: 55 } } )
//查询数组内嵌文档 //查询数组points内嵌文档键points的值小于等于55的文档,此处未指定数组下标
db.users.find( { 'points.points': { $lte: 55 } } )
//查询数组元素至少一个内嵌文档满足所有条件的文档
//如下,数组points内至少一个文档points键的值小于等于70,bonus键的值等于20的记录,这样的文档被返回
db.users.find( { points: { $elemMatch: { points: { $lte: 70 }, bonus: 20 } } } )
//查询数组元素任意一个内嵌文档满足所有条件的文档
//如下,数组points内嵌文档任意一个文档points的值小于等于70,且数组内另外一个文档bonus值等于20
//或者数组内某个内嵌文档points的值小于等于70,bonus的值等于20,这2种情形会被返回
db.users.find( { "points.points": { $lte: 70 }, "points.bonus": 20 } )
{ field1: , field2: ... }
1 or true 显示该字段
0 or false 不显示该字段
//查询结果中显示字段name及status,缺省情况下,文档的_id列会被返回
> db.users.find( { status: "A" }, { name: 1, status: 1 } )
{ "_id" : 2, "name" : "bob", "status" : "A" }
{ "_id" : 3, "name" : "ahn", "status" : "A" }
{ "_id" : 6, "name" : "abc", "status" : "A" }
//查询结果中显示字段name及status,且不显示_id列
> db.users.find( { status: "A" }, { name: 1, status: 1, _id: 0 } )
{ "name" : "bob", "status" : "A" }
{ "name" : "ahn", "status" : "A" }
{ "name" : "abc", "status" : "A" }
//返回查询中未列出的全部列名
> db.users.find( { status: "A" }, { favorites: 0, points: 0 ,badges:0})
{ "_id" : 2, "name" : "bob", "age" : 42, "type" : 1, "status" : "A", "finished" : [ 11, 25 ] }
{ "_id" : 3, "name" : "ahn", "age" : 22, "type" : 2, "status" : "A", "finished" : [ 6 ] }
{ "_id" : 6, "name" : "abc", "age" : 43, "type" : 1, "status" : "A", "finished" : [ 18, 12 ] }
//返回内嵌文档指定的列名,相反地,如果不显示内嵌文档的某个列,将在置0即可
> db.users.find(
{ status: "A" },
{ name: 1, status: 1, "favorites.food": 1 }
)
{ "_id" : 2, "name" : "bob", "status" : "A", "favorites" : { "food" : "meringue" } }
{ "_id" : 3, "name" : "ahn", "status" : "A", "favorites" : { "food" : "cake" } }
{ "_id" : 6, "name" : "abc", "status" : "A", "favorites" : { "food" : "pizza" } }
//返回数组内内嵌文档的指定列,如下查询为数组points内嵌文档bonus列
> db.users.find( { status: "A" },{ name: 1,"points.bonus": 1 } )
{ "_id" : 2, "name" : "bob", "points" : [ { "bonus" : 20 }, { "bonus" : 12 } ] }
{ "_id" : 3, "name" : "ahn", "points" : [ { "bonus" : 8 }, { "bonus" : 20 } ] }
{ "_id" : 6, "name" : "abc", "points" : [ { "bonus" : 8 }, { "bonus" : 7 } ] }
//下面的查询使用了$slice操作符,这将仅仅返回符合status为A,且显示数组中的最后一个元素
> db.users.find( { status: "A" }, { name: 1, status: 1, points: { $slice: -1 } } )
{ "_id" : 2, "name" : "bob", "status" : "A", "points" : [ { "points" : 64, "bonus" : 12 } ] }
{ "_id" : 3, "name" : "ahn", "status" : "A", "points" : [ { "points" : 55, "bonus" : 20 } ] }
{ "_id" : 6, "name" : "abc", "status" : "A", "points" : [ { "points" : 57, "bonus" : 7 } ] }
//插入文档
> db.users.insert(
[
{ "_id" : 900, "name" : null },
{ "_id" : 901 },
{ "_id" : 902,"name" : "Leshami" ,"blog" : "http://blog.csdn.net/leshami"}
]
)
//查询name自动为null的文档,注,以下查询中,不存在name列的文档_id:901的也被返回
> db.users.find( { name: null } )
{ "_id" : 900, "name" : null }
{ "_id" : 901 }
//通过$type方式返回name为null的文档,此时_id:901未返回
> db.users.find( { name : { $type: 10 } } )
{ "_id" : 900, "name" : null }
//通过$exists返回name自动不存在的文档
> db.users.find( { name : { $exists: false } } )
{ "_id" : 901 }
1、文档查询db.users.find()等价于db.users.find( {} )
2、基于 and运算符的多个组合条件可以省略 and,直接将条件组合即可
3、对于$and运算符内的条件,用[]括起来,相当于数组形式
4、对于数组查询,可以使用基于下标的方式精确配置特定的元素值
5、对于内嵌文档,可以使用”文档键.内嵌文档键”方式进行访问
6、对于数组内内嵌文档的方式,可以使用”数组名.下标.内嵌文档键”方式访问
7、对于哪些列名需要显示可以通过{ field1: <0|1>, … }来设定
8、本文参考:https://docs.mongodb.com/manual/tutorial/query-documents/