乐观锁-CAS


前言

观锁

资料:http://www.cnblogs.com/wang-meng/p/5506943.html

悲观锁

在关系数据库管理系统里,悲观并发控制(又名“悲观锁”,Pessimistic Concurrency Control,缩写“PCC”)是一种并发控制的方法。它可以阻止一个事务以影响其他用户的方式来修改数据。如果一个事务执行的操作都某行数据应用了锁,那只有当这个事务把锁释放,其他事务才能够执行与该锁冲突的操作。
悲观并发控制主要用于数据争用激烈的环境,以及发生并发冲突时使用锁保护数据的成本要低于回滚事务的成本的环境中。

悲观锁,正如其名,它指的是对数据被外界(包括本系统当前的其他事务,以及来自外部系统的事务处理)修改持保守态度(悲观),因此,在整个数据处理过程中,将数据处于锁定状态。 悲观锁的实现,往往依靠数据库提供的锁机制 (也只有数据库层提供的锁机制才能真正保证数据访问的排他性,否则,即使在本系统中实现了加锁机制,也无法保证外部系统不会修改数据)

在数据库中,悲观锁的流程如下:

在对任意记录进行修改前,先尝试为该记录加上排他锁(exclusive locking)。

如果加锁失败,说明该记录正在被修改,那么当前查询可能要等待或者抛出异常。 具体响应方式由开发者根据实际需要决定。

如果成功加锁,那么就可以对记录做修改,事务完成后就会解锁了。

其间如果有其他对该记录做修改或加排他锁的操作,都会等待我们解锁或直接抛出异常。

乐观锁

在关系数据库管理系统里,乐观并发控制(又名“乐观锁”,Optimistic Concurrency Control,缩写“OCC”)是一种并发控制的方法。它假设多用户并发的事务在处理时不会彼此互相影响,各事务能够在不产生锁的情况下处理各自影响的那部分数据。在提交数据更新之前,每个事务会先检查在该事务读取数据后,有没有其他事务又修改了该数据。如果其他事务有更新的话,正在提交的事务会进行回滚。乐观事务控制最早是由孔祥重(H.T.Kung)教授提出。

乐观锁( Optimistic Locking ) 相对悲观锁而言,乐观锁假设认为数据一般情况下不会造成冲突,所以在数据进行提交更新的时候,才会正式对数据的冲突与否进行检测,如果发现冲突了,则让返回用户错误的信息,让用户决定如何去做。

相对于悲观锁,在对数据库进行处理的时候,乐观锁并不会使用数据库提供的锁机制。一般的实现乐观锁的方式就是记录数据版本。

数据版本,为数据增加的一个版本标识。当读取数据时,将版本标识的值一同读出,数据每更新一次,同时对版本标识进行更新。当我们提交更新的时候,判断数据库表对应记录的当前版本信息与第一次取出来的版本标识进行比对,如果数据库表当前版本号与第一次取出来的版本标识值相等,则予以更新,否则认为是过期数据。

实现数据版本有两种方式,第一种是使用版本号,第二种是使用时间戳。

线程安全

众所周知,Java是多线程的。但是,Java对多线程的支持其实是一把双刃剑。一旦涉及到多个线程操作共享资源的情况时,处理不好就可能产生线程安全问题。线程安全性可能是非常复杂的,在没有充足的同步的情况下,多个线程中的操作执行顺序是不可预测的。

Java里面进行多线程通信的主要方式就是共享内存的方式,共享内存主要的关注点有两个:可见性和有序性。加上复合操作的原子性,我们可以认为Java的线程安全性问题主要关注点有3个:可见性、有序性和原子性。

Java内存模型(JMM)解决了可见性和有序性的问题,而锁解决了原子性的问题。这里不再详细介绍JMM及锁的其他相关知识。但是我们要讨论一个问题,那就是锁到底是不是有利无弊的?

锁存在的问题

Java在JDK1.5之前都是靠synchronized关键字保证同步的,这种通过使用一致的锁定协议来协调对共享状态的访问,可以确保无论哪个线程持有共享变量的锁,都采用独占的方式来访问这些变量。独占锁其实就是一种悲观锁,所以可以说synchronized是悲观锁。

悲观锁机制存在以下问题:

在多线程竞争下,加锁、释放锁会导致比较多的上下文切换和调度延时,引起性能问题。

一个线程持有锁会导致其它所有需要此锁的线程挂起。

如果一个优先级高的线程等待一个优先级低的线程释放锁会导致优先级倒置,引起性能风险。

而另一个更加有效的锁就是乐观锁。所谓乐观锁就是,每次不加锁而是假设没有冲突而去完成某项操作,如果因为冲突失败就重试,直到成功为止。

与锁相比,volatile变量是一个更轻量级的同步机制,因为在使用这些变量时不会发生上下文切换和线程调度等操作,但是volatile不能解决原子性问题,因此当一个变量依赖旧值时就不能使用volatile变量。因此对于同步最终还是要回到锁机制上来。

乐观锁

乐观锁( Optimistic Locking)其实是一种思想。相对悲观锁而言,乐观锁假设认为数据一般情况下不会造成冲突,所以在数据进行提交更新的时候,才会正式对数据的冲突与否进行检测,如果发现冲突了,则让返回用户错误的信息,让用户决定如何去做。

上面提到的乐观锁的概念中其实已经阐述了他的具体实现细节:主要就是两个步骤:冲突检测和数据更新。其实现方式有一种比较典型的就是Compare and Swap(CAS)。

CAS

CAS是项乐观锁技术,当多个线程尝试使用CAS同时更新同一个变量时,只有其中一个线程能更新变量的值,而其它线程都失败,失败的线程并不会被挂起,而是被告知这次竞争中失败,并可以再次尝试。

内存值V,旧的预期值A,要修改的新值B。当且仅当预期值A和内存值V相同时,将内存值V修改为B,否则什么都不做。

现代的CPU提供了特殊的指令,允许算法执行读-修改-写操作,而无需害怕其他线程同时修改变量,因为如果其他线程修改变量,那么CAS会检测它(并失败),算法可以对该操作重新计算。而 compareAndSet() 就用这些代替了锁定。

CAS 操作包含三个操作数 —— 内存位置(V)、旧的预期值(A)和新值(B)。如果内存位置的值与预期原值相匹配,那么处理器会自动将该位置值更新为新值。否则,处理器不做任何操作。无论哪种情况,它都会在 CAS 指令之前返回该位置的值。(在 CAS 的一些特殊情况下将仅返回 CAS 是否成功,而不提取当前值。)CAS 有效地说明了“我认为位置 V 应该包含值 A;如果包含该值,则将 B 放到这个位置;否则,不要更改该位置,只告诉我这个位置现在的值即可。”这其实和乐观锁的冲突检查+数据更新的原理是一样的。

Java对CAS的支持

在JDK1.5 中新增java.util.concurrent(J.U.C)就是建立在CAS之上的。相对于对于synchronized这种阻塞算法,CAS是非阻塞算法的一种常见实现。所以J.U.C在性能上有了很大的提升。

我们以java.util.concurrent中的AtomicInteger为例,看一下在不使用锁的情况下是如何保证线程安全的。主要理解getAndIncrement方法,该方法的作用相当于 ++i 操作。

ABA问题

CAS会导致“ABA问题”。

ABA实际上是乐观锁无法解决脏数据读取的一种体现。CAS算法实现一个重要前提需要取出内存中某时刻的数据,而在下时刻比较并替换,那么在这个时间差内会导致数据的变化。比如说一个线程one从内存位置V中取出A,这时候另一个线程two也从内存中取出A,并且two进行了一些操作变成了B,然后two又将V位置的数据变成A,这时候线程one进行CAS操作发现内存中仍然是A,然后one操作成功。尽管线程one的CAS操作成功,但是不代表这个过程就是没有问题的。如果链表的头在变化了两次后恢复了原值,但是不代表链表就没有变化。(这个具体还要再举例说明)

部分乐观锁的实现是通过版本号(version)的方式来解决ABA问题,乐观锁每次在执行数据的修改操作时,都会带上一个版本号,一旦版本号和数据的版本号一致就可以执行修改操作并对版本号执行+1操作,否则就执行失败。因为每次操作的版本号都会随之增加,所以不会出现ABA问题,因为版本号只会增加不会减少。

总结

Java中的线程安全问题至关重要,要想保证线程安全,就需要锁机制。锁机制包含两种:乐观锁与悲观锁。悲观锁是独占锁,阻塞锁。乐观锁是非独占锁,非阻塞锁。有一种乐观锁的实现方式就是CAS ,这种算法在JDK 1.5中引入的java.util.concurrent中有广泛应用。但是值得注意的是这种算法会存在ABA问题。

CAS与对象创建

另外,CAS还有一个应用,那就是在JVM创建对象的过程中。对象创建在虚拟机中是非常频繁的。即使是仅仅修改一个指针所指向的位置,在并发情况下也不是线程安全的,可能正在给对象A分配内存空间,指针还没来得及修改,对象B又同时使用了原来的指针来分配内存的情况。解决这个问题的方案有两种,其中一种就是采用CAS配上失败重试的方式保证更新操作的原子性。

你可能感兴趣的:(java基础学习)