很明显这是在致敬【SDOI2014】约数个数和。所以才叫"旧试题"
还是先化简式子。首先有二元组的结论,证明在上面那篇博客里面。
d ( i j ) = ∑ k ∣ i ∑ l ∣ j [ gcd ( k , l ) = 1 ] d(ij)=\sum_{k\mid i}\sum_{l\mid j}[\gcd(k,l)=1] d(ij)=k∣i∑l∣j∑[gcd(k,l)=1]
其实约数个数的结论可以推广到任意多元组,现在尝试推广到三元组。
d ( i j h ) = ∑ k ∣ i ∑ l t ∣ j h [ gcd ( k , l t ) = 1 ] = ∑ k ∣ i ∑ l ∣ j ∑ t ∣ h [ gcd ( k , l ) = 1 ] [ gcd ( l , t ) = 1 ] [ gcd ( k , t ) = 1 ] \begin{aligned} d(ijh)&=&&\sum_{k\mid i}\sum_{lt\mid jh}[\gcd(k,lt)=1]\\ &=&&\sum_{k\mid i}\sum_{l\mid j}\sum_{t\mid h}[\gcd(k,l)=1][\gcd(l,t)=1][\gcd(k,t)=1] \end{aligned} d(ijh)==k∣i∑lt∣jh∑[gcd(k,lt)=1]k∣i∑l∣j∑t∣h∑[gcd(k,l)=1][gcd(l,t)=1][gcd(k,t)=1]
为了保证因子枚举的不重复性这里加上了 [ gcd ( l , t ) = 1 ] [\gcd(l,t)=1] [gcd(l,t)=1],证明动动脑子都能想出来,就不写了 。
所以开始推式子:
A n s = ∑ i = 1 A ∑ j = 1 B ∑ h = 1 C d ( i j h ) = ∑ i = 1 A ∑ j = 1 B ∑ h = 1 C ∑ k ∣ i ∑ l ∣ j ∑ t ∣ h [ gcd ( k , l ) = 1 ] [ gcd ( l , t ) = 1 ] [ gcd ( k , t ) = 1 ] = ∑ k = 1 A ∑ l = 1 B ∑ t = 1 C ⌊ A k ⌋ ⌊ B l ⌋ ⌊ C t ⌋ [ gcd ( k , l ) = 1 ] [ gcd ( l , t ) = 1 ] [ gcd ( k , t ) = 1 ] = ∑ k = 1 A ∑ l = 1 B ∑ t = 1 C ⌊ A k ⌋ ⌊ B l ⌋ ⌊ C t ⌋ ∑ a ∣ k , a ∣ l μ ( a ) ∑ b ∣ l , b ∣ t μ ( b ) ∑ c ∣ k , c ∣ t μ ( c ) = ∑ a = 1 min ( A , B ) ∑ b = 1 min ( B , C ) ∑ c = 1 min ( A , C ) μ ( a ) μ ( b ) μ ( c ) ∑ lcm ( a , c ) ∣ k ⌊ A k ⌋ ∑ lcm ( a , b ) ∣ l ⌊ B l ⌋ ∑ lcm ( b , c ) ∣ t ⌊ C t ⌋ \begin{aligned} Ans&=&&\sum_{i=1}^A\sum_{j=1}^B\sum_{h=1}^{C}d(ijh)\\ &=&&\sum_{i=1}^A\sum_{j=1}^B\sum_{h=1}^{C}\sum_{k\mid i}\sum_{l\mid j}\sum_{t\mid h}[\gcd(k,l)=1][\gcd(l,t)=1][\gcd(k,t)=1]\\ &=&&\sum_{k=1}^A\sum_{l=1}^B\sum_{t=1}^C\lfloor\frac{A}k\rfloor\lfloor\frac{B}{l}\rfloor\lfloor\frac{C}{t}\rfloor[\gcd(k,l)=1][\gcd(l,t)=1][\gcd(k,t)=1]\\ &=&&\sum_{k=1}^A\sum_{l=1}^B\sum_{t=1}^C\lfloor\frac{A}k\rfloor\lfloor\frac{B}{l}\rfloor\lfloor\frac{C}{t}\rfloor\sum_{a\mid k,a\mid l}\mu(a)\sum_{b\mid l,b\mid t}\mu(b)\sum_{c\mid k,c\mid t}\mu(c)\\ &=&&\sum_{a=1}^{\min(A,B)}\sum_{b=1}^{\min(B,C)}\sum_{c=1}^{\min(A,C)}\mu(a)\mu(b)\mu(c)\sum_{\text{lcm}(a,c)\mid k}\lfloor\frac{A}{k}\rfloor\sum_{\text{lcm}(a,b)\mid l}\lfloor\frac{B}{l}\rfloor\sum_{\text{lcm}(b,c)\mid t}\lfloor\frac{C}{t}\rfloor \end{aligned} Ans=====i=1∑Aj=1∑Bh=1∑Cd(ijh)i=1∑Aj=1∑Bh=1∑Ck∣i∑l∣j∑t∣h∑[gcd(k,l)=1][gcd(l,t)=1][gcd(k,t)=1]k=1∑Al=1∑Bt=1∑C⌊kA⌋⌊lB⌋⌊tC⌋[gcd(k,l)=1][gcd(l,t)=1][gcd(k,t)=1]k=1∑Al=1∑Bt=1∑C⌊kA⌋⌊lB⌋⌊tC⌋a∣k,a∣l∑μ(a)b∣l,b∣t∑μ(b)c∣k,c∣t∑μ(c)a=1∑min(A,B)b=1∑min(B,C)c=1∑min(A,C)μ(a)μ(b)μ(c)lcm(a,c)∣k∑⌊kA⌋lcm(a,b)∣l∑⌊lB⌋lcm(b,c)∣t∑⌊tC⌋
令 f ( n , k ) = ∑ k ∣ t ⌊ n t ⌋ f(n,k)=\sum_{k\mid t}\lfloor\frac{n}t\rfloor f(n,k)=∑k∣t⌊tn⌋,显然,当 n n n确定的时候,可以 O ( n log n ) O(n\log n) O(nlogn)时间内处理出 f n fn fn数组。
现在最蛋疼的是考虑前面的三个 μ \mu μ。
这道题形式上就很反整除分块,我们换一个方向,考虑那些 μ \mu μ值不为 0 0 0,且在 f f f中有值的 a , b , c a,b,c a,b,c。
如果 μ ( a ) ! = 0 , μ ( b ) ! = 0 \mu(a)!=0,\mu(b)!=0 μ(a)!=0,μ(b)!=0且 f ( max ( A , B , C ) , lcm ( a , b ) ) ! = 0 f(\max(A,B,C),\text{lcm}(a,b))!=0 f(max(A,B,C),lcm(a,b))!=0,那么我们在 a , b a,b a,b之间连一条边权为 lcm ( a , b ) \text{lcm}(a,b) lcm(a,b)边(包括自环,不过自环可以单独处理)。(其实这个边权就是为了后面来在 f f f数组里面找东西用的)
其实极限数据边数也只有700多。
现在发现了什么?
我们需要统计的所有 a , b , c a,b,c a,b,c三元组在原图中形成了一个三元环!
现在我们需要做的就是三元环计数了,直接做复杂度可能达到 O ( n m ) O(nm) O(nm),通过一些优化可以优化到 O ( m m ) O(m\sqrt m) O(mm),具体的看这里:大佬博客
现在考虑一个问题,图怎么建? O ( n 2 ) O(n^2) O(n2)的暴力显然直接 T T T飞了。
我们考虑枚举 gcd ( a , b ) , a gcd ( a , b ) , b gcd ( a , b ) \gcd(a,b),\frac{a}{\gcd(a,b)},\frac{b}{\gcd(a,b)} gcd(a,b),gcd(a,b)a,gcd(a,b)b,显然我们只需要保证 a , b a,b a,b的 μ \mu μ不为 0 0 0,且 a gcd ( a , b ) , b gcd ( a , b ) \frac{a}{\gcd(a,b)},\frac{b}{\gcd(a,b)} gcd(a,b)a,gcd(a,b)b互质就行了。
跑得还挺快的。
代码:
#include
using namespace std;
#define ll long long
#define re register
#define cs const
cs int P=1e5+5;
int prime[P],pcnt;
bool mark[P];
int mu[P];
inline void linear_sieves(int len=P-5){
mu[1]=1;
for(int re i=2;i<=len;++i){
if(!mark[i])prime[++pcnt]=i,mu[i]=-1;
for(int re j=1;i*prime[j]<=len;++j){
mark[i*prime[j]]=true;
if(i%prime[j])mu[i*prime[j]]=-mu[i];
else break;
}
}
}
inline int gcd(int a,int b){
static int tmp;
while(b){
tmp=a%b;
a=b;
b=tmp;
}
return a;
}
cs int mod=1e9+7;
int n,A,B,C;
int fa[P],fb[P],fc[P];
int sa[P],sb[P],sc[P];
ll ans;
struct E{
int to,val;};
vector<E> edge[P];
int deg[P];
struct data{
int x,y,z;
}a[P*10];
int tot;
inline bool check(cs data& a){
return deg[a.x]==deg[a.y]?a.x<a.y:deg[a.x]<deg[a.y];
}
inline void solve(){
scanf("%d%d%d",&A,&B,&C);
n=max(A,max(B,C));tot=ans=0;
for(int re i=1;i<=n;++i)
for(int re j=i;j<=n;j+=i)fa[i]+=A/j,fb[i]+=B/j,fc[i]+=C/j;
for(int re i=1;i<=n;++i)ans+=(ll)mu[i]*fa[i]*fb[i]*fc[i];
for(int re i=1;i<=n;++i)if(mu[i])
for(int re j=1;j*i<=n;++j)if(mu[i*j])
for(int re k=1;i*j*k<=n;++k)if(k!=j&&mu[i*k]&&gcd(k,j)==1){
int x=i*j,y=i*k,z=i*j*k,tmp=mu[x]*mu[x]*mu[y];
ans+=(ll)tmp*fa[x]*fb[z]*fc[z];
ans+=(ll)tmp*fb[x]*fa[z]*fc[z];
ans+=(ll)tmp*fc[x]*fa[z]*fb[z];
if(x>y)a[++tot]=(data){
x,y,z},++deg[x],++deg[y];
}
for(int re i=1;i<=tot;++i)
if(check(a[i]))edge[a[i].x].push_back((E){
a[i].y,a[i].z});
else edge[a[i].y].push_back((E){
a[i].x,a[i].z});
for(int re x=1;x<=n;++x)if(mu[x]){
for(int re e=0;e<edge[x].size();++e){
int y=edge[x][e].to,z=edge[x][e].val;
sa[y]=fa[z];
sb[y]=fb[z];
sc[y]=fc[z];
}
for(int re e=0,y,w1;e<edge[x].size();++e){
y=edge[x][e].to,w1=edge[x][e].val;
if(mu[y])for(int re k=0,z,w2,tmp;k<edge[y].size();++k){
z=edge[y][k].to,w2=edge[y][k].val,tmp=mu[x]*mu[y]*mu[z];
ans+=(ll)tmp*fa[w1]*fb[w2]*sc[z];
ans+=(ll)tmp*fa[w1]*fc[w2]*sb[z];
ans+=(ll)tmp*fb[w1]*fa[w2]*sc[z];
ans+=(ll)tmp*fb[w1]*fc[w2]*sa[z];
ans+=(ll)tmp*fc[w1]*fa[w2]*sb[z];
ans+=(ll)tmp*fc[w1]*fb[w2]*sa[z];
}
}
for(int re e=0;e<edge[x].size();++e){
int y=edge[x][e].to;
sa[y]=sb[y]=sc[y]=0;
}
}
cout<<ans%mod<<"\n";
}
inline void init(){
for(int re i=1;i<=n;++i)edge[i].clear();
memset(fa+1,0,sizeof(int)*n);
memset(fb+1,0,sizeof(int)*n);
memset(fc+1,0,sizeof(int)*n);
memset(deg+1,0,sizeof(int)*n);
}
int T;
signed main(){
linear_sieves();
scanf("%d",&T);
while(T--){
init();
solve();
}
return 0;
}