- SoK: A Critical Evaluation of Efficient Website Fingerprinting Defenses
2023攻击和防御模型防御评估准确度、精确度和召回率:使用准确率来评估攻击模型在多类别封闭世界设置中的性能,但在二进制开放世界设置中使用精确率和召回率防御策略:(1)增加虚拟流量、(2)增加流量延迟、(3)将流量从一个流移到另一个流固定速率发送流量F,随机抽样以添加填充R,修改流量以产生与目标流量样本或模式的碰撞C,将流量分成多个流S,使用对抗性扰动来欺骗机器学习模型AF:(1)(2)BuFLO,
- Python知识点:如何使用Nvidia Jetson与Python进行边缘计算
杰哥在此
Python系列python边缘计算开发语言面试编程
开篇,先说一个好消息,截止到2025年1月1日前,翻到文末找到我,赠送定制版的开题报告和任务书,先到先得!过期不候!如何使用NvidiaJetson与Python进行边缘计算NvidiaJetson平台是专为边缘计算设计的一系列AI计算机,它们能够处理和分析来自物联网(IoT)设备和边缘节点的数据。这些设备小巧、节能且功能强大,非常适合用于执行机器学习、计算机视觉和自然语言处理等任务。Python
- Kotlin学习5—泛型
SyubanLiu
KotlinKotlin
前言什么是泛型?在我们一般的编程模式下,我们需要给任何一个变量指定一个具体的数据类型,而泛型允许我们不指定具体类型的情况下进行编程,这样会具有更好的扩展性泛型的基本用法泛型主要有两种定义方式:定义泛型类,及定义泛型方法,使用的语法结构都是,括号中的字母使用任何字母都可以的,T只是常规写法在Kotlin中,还拥有非常出色的类型推导机制,假设我们传入一个Int类型的参数,Kotlin能够自动推导出泛型
- Kafka消息轨迹追踪:分布式系统调试利器
大数据洞察
kafkalinq分布式ai
Kafka消息轨迹追踪:分布式系统调试利器关键词Kafka、消息轨迹追踪、分布式系统、调试、消息处理、事件溯源摘要本文聚焦于Kafka消息轨迹追踪这一分布式系统调试的关键技术。首先介绍Kafka消息轨迹追踪的概念基础,包括其在分布式系统中的背景、发展历史以及问题空间。接着阐述其理论框架,从第一性原理进行推导,并分析理论局限性和竞争范式。在架构设计方面,对系统进行分解,构建组件交互模型并可视化展示。
- 脑机新手指南(十五)speechBCI 项目新手入门指南(上):项目概述、代码结构与环境搭建
Brduino脑机接口技术答疑
脑机新手指南python脑机接口新手入门
一、引言在脑机接口(BCI)领域,语音相关的研究正不断取得突破。speechBCI项目为语音脑机接口的研究提供了一个优秀的开源代码库。该项目与前沿的学术研究、丰富的数据集以及具有挑战性的机器学习竞赛紧密相连。本指南将分上下两篇,详细引导新手深入了解和使用speechBCI项目。二、项目概述speechBCI项目不仅仅是一个代码集合,它背后有着深厚的学术背景和实际应用价值。它与一篇发表在[Natur
- Python程序设计 第6章:函数和函数式编程
若北辰
Python程序设计python开发语言
Python程序设计Python是全球范围内最受欢迎的编程语言之一,学好Python将对个人职业生涯产生很大的助力,Python在机器学习、深度学习、数据挖掘等领域应用极为广泛。在数据科学家/数据分析师、人工智能工程师、网络安全工程师、软件工程师/全栈工程师、自动化测试工程师等岗位,年入50万,很普遍,学好Python,高薪就业不是问题,因此推出Python程序设计系列文章:Python程序设计第
- 什么是神经网络和机器学习?【云驻共创】
一键难忘
人工智能机器学习深度学习神经网络网络
什么是神经网络和机器学习?一.背景在当今数字化浪潮中,神经网络和机器学习已成为科技领域的中流砥柱。它们作为人工智能的支柱,推动了自动化、智能化和数据驱动决策的进步。然而,对于初学者和专业人士来说,理解神经网络和机器学习的本质是至关重要的。在本文中,我们将深入探讨这两个概念的内涵、工作原理以及彼此之间的联系。二.神经网络和机器学习简介神经网络和机器学习都是人工智能领域中的重要概念,它们通常用于解决各
- python学智能算法(十五)|机器学习朴素贝叶斯方法进阶-CountVectorizer多文本处理
西猫雷婶
人工智能机器学习python学习笔记机器学习python人工智能深度学习scikit-learn
【1】引言前序学习进程中,已经学习CountVectorizer文本处理的简单技巧,先相关文章链接为:python学智能算法(十四)|机器学习朴素贝叶斯方法进阶-CountVectorizer文本处理简单测试-CSDN博客此次继续深入,研究多文本的综合处理。【2】代码测试首先相对于单文本测试,直接将文本改成多行文本:#引入必要的模块fromsklearn.feature_extraction.te
- python学智能算法(十六)|机器学习支持向量机简单示例
西猫雷婶
python学习笔记人工智能机器学习机器学习python支持向量机人工智能深度学习
【1】引言前序学习了逻辑回归等算法,相关文章链接包括且不限于:python学智能算法(十)|机器学习逻辑回归(Logistic回归)_逻辑回归算法python-CSDN博客python学智能算法(十一)|机器学习逻辑回归深入(Logistic回归)_np.random.logistic()-CSDN博客今天在此基础上更进一步,学习支持向量机,为实现较好地理解,先解读一个简单算例。【2】代码解读【2
- 人工智能-基础篇-2-什么是机器学习?(ML,监督学习,半监督学习,零监督学习,强化学习,深度学习,机器学习步骤等)
weisian151
人工智能人工智能机器学习学习
1、什么是机器学习?机器学习(MachineLearning,ML)是人工智能的一个分支,是一门多领域交叉学科,涉及概率论、统计学、逼近论、凸分析等数学理论。其核心目标是让计算机通过分析数据,自动学习规律并构建模型,从而对未知数据进行预测或决策,而无需依赖显式的程序指令。基本思想:通过数据驱动的方式,使系统能够从经验(数据)中改进性能,形成对数据模式的抽象化表达。基本概念:模型:模型是对现实世界现
- 2025 年最强 RPA 软件盘点
天竺鼠不该去劝架
人工智能
RPA(机器人流程自动化)软件成为了企业提升效率、降低成本的重要工具。以下是2025年一些顶尖的RPA软件盘点。国外RPA软件UiPath地位:全球RPA市场的领军者。功能特性:全能型平台,覆盖流程发现、自动化设计到机器人管理全生命周期。拥有易用的低代码设计器,便于快速上手;强大的AI集成,可实现机器学习和文档理解;能与ERP、CRM等系统无缝集成。适用场景:适用于金融、零售、制造业等需要处理复杂
- 《机器学习数学基础》补充资料:什么是随机变量
CS创新实验室
机器学习数学基础机器学习人工智能数学概率
卓永鸿提供本文介绍什么是随机变量及为什么要发展此种概念。我们先来看这个问题:一个边长为aaa的正三角形,CCC为其外接圆,外接圆半径为RRR。若在圆内随机作一弦,则弦长lll大于aaa的概率为何?法1:随机半径法先拉出一条圆半径,然后随机在半径上取一点,再画出通过此点并垂直半径的弦。易知当弦心距小于R/2R/2R/2时,弦长lll大于aaa,故概率为1/21/21/2。法2:随机端点法在圆周上随机
- 在浏览器中使用TensorFlow.js
魏铁锤chui
tensorflowjavascript人工智能
TensorFlow.js简介介绍光学字符识别(OCR)是指能够从图像或文档中捕获文本元素,并将其转换为机器可读的文本格式的技术。如果您想了解更多关于这个主题的内容,本文是一个很好的介绍。TensorFlow.js是一个库,用于使用JavaScript开发和训练机器学习模型,并将其部署在浏览器中或Node.js上。您可以使用现有模型、转换PythonTensorFlow模型、使用迁移学习用您自己的
- c++基于BP神经网络的手写数字识别
鱼弦
机器学习设计类系统开发语言人工智能
鱼弦:CSDN内容合伙人、CSDN新星导师、全栈领域创作新星创作者、51CTO(Top红人+专家博主)、github开源爱好者(go-zero源码二次开发、游戏后端架构https://github.com/Peakchen)基于BP(Backpropagation)神经网络的手写数字识别是一种常见的机器学习应用。下面我将为您提供原理的详细解释、使用场景的解释以及一些相关的文献材料链接。原理详细解释
- C++ 泛型编程利器:模板机制
筏.k
c++知识点c++算法开发语言
C++泛型编程利器:模板机制全解析——类型安全与代码复用的完美结合(含实战陷阱)更新时间:2025年6月19日️标签:C++|模板|泛型编程|函数模板|类模板|C++基础文章目录前言一、基础概念:C++模板1.什么是模板2.模板的作用二、语法详解:模板的实现1.函数模板1.1基本语法1.2多类型参数1.3非类型参数2.类模板2.1基本语法2.2模板特化2.3偏特化3.2类型推导⚠️三、常见陷阱陷阱
- 基于uniapp微信小程+SpringBoot+Vue的流浪动物救助领养系统设计和实现(源码+论文+部署讲解等)
博主介绍:✌全网粉丝50W+,csdn特邀作者、博客专家、CSDN新星计划导师、Java领域优质创作者,博客之星、掘金/华为云/阿里云/InfoQ等平台优质作者、专注于Java技术领域和学生毕业项目实战,高校老师/讲师/同行前辈交流✌技术范围:SpringBoot、Vue、SSM、HLMT、Jsp、PHP、Nodejs、Python、爬虫、数据可视化、小程序、安卓app、大数据、物联网、机器学习等
- Python高效移除列表中符合条件的元素:5种方法详解
Ven%
pythonpython算法开发语言
文章目录1.列表推导式(推荐首选)2.filter()函数(函数式编程)3.倒序删除法(原地修改)4.while循环(正向删除)5.切片赋值(原地高效修改)方法对比与选择指南注意事项总结在Python开发中,经常需要对列表进行过滤操作,移除不符合条件的元素。本文将全面介绍5种常用方法,并分析各自的适用场景和性能特点。1.列表推导式(推荐首选)最简洁高效的方式,特别适合中小型列表numbers=[1
- 贝叶斯回归:从概率视角量化预测的不确定性
大千AI助手
人工智能Python#OTHER回归数据挖掘人工智能机器学习算法贝叶斯
本文由「大千AI助手」原创发布,专注用真话讲AI,回归技术本质。拒绝神话或妖魔化。搜索「大千AI助手」关注我,一起撕掉过度包装,学习真实的AI技术!贝叶斯方法在回归问题中的应用被称为贝叶斯回归(BayesianRegression)。与传统频率派的线性回归(如最小二乘法)不同,贝叶斯回归的核心思想是:将回归参数(如权重系数)视为随机变量,通过贝叶斯定理结合先验分布和观测数据,推导出参数的后验分布,
- 【Python】Hydra 用法详解
行码棋
#Pythonpython开发语言
Hydra官方文档Hydra(Python配置管理工具)1.引言在机器学习、深度学习和软件开发中,管理复杂的配置是一个常见的挑战。Hydra是一个强大的Python库,允许开发者轻松地管理和组织配置文件,支持动态参数覆盖、多层次配置和可组合配置等特性。2.安装HydraHydra可以通过pip直接安装:pipinstallhydra-core安装完成后,你可以使用hydra进行配置管理。3.基础用
- 用户实体行为分析与数据异常访问联防方案
KKKlucifer
时序数据库
一、用户实体行为分析(UEBA)技术概述1.1定义与概念用户实体行为分析(UEBA)是一种高级网络安全方法,它利用机器学习和行为分析技术,对用户、设备、应用程序等实体在网络环境中的行为进行深入分析,以检测出异常行为和潜在的安全威胁。UEBA的核心在于通过建立行为基线,识别出偏离正常行为模式的活动,从而发现那些传统安全工具难以检测到的高级、隐藏和内部威胁。1.2工作原理UEBA系统通过收集来自多个数
- java opencv 数字识别算法_[机器学习]基于OpenCV实现最简单的数字识别
后期小雨
javaopencv数字识别算法
本文将基于OpenCV实现简单的数字识别。这里以游戏AngryBirds为例,通过以下几个主要步骤对其中右上角的分数部分进行自动识别。1.学习分类器根据训练样本,选取模型训练产生数字分类器。这里的样本可以是通用的数字样本库(如NIST等),也可以是针对应用场景而制作的专门训练样本。前者优在泛化性,后者强在准确率,当然常用做法是将这两者结合,即在通用数字库基础上做修改。另外这里由于模式并不复杂,计算
- Python 爬虫实战:从图片网站抓取图片并进行特征提取(2025 最新版)
Python爬虫项目
2025年爬虫实战项目python爬虫开发语言githubchrome数据库
一、引言在当今的数字时代,图像数据在各个领域中扮演着至关重要的角色。无论是计算机视觉、机器学习,还是数据分析,图像数据的获取和处理都是基础。然而,获取大量高质量的图像数据并非易事。幸运的是,互联网上充斥着丰富的图像资源,只需借助合适的工具和技术,我们就能高效地从中获取所需的图像数据。本文将详细介绍如何使用Python构建一个完整的爬虫系统,从图片网站抓取图像,并对其进行特征提取。我们将涵盖从网页分
- 经典文生图的GAN模型-HDGAN介绍
这张生成的图像能检测吗
GAN系列生成对抗网络人工智能神经网络计算机视觉深度学习机器学习
简介简介:这篇论文提出了一种名为HDGAN(Hierarchically-nestedDiscriminatorsGAN)的新方法,用于解决文本到图像合成这一挑战性任务。该方法的主要创新点包括:分层嵌套对抗目标:在网络层次结构内部引入配套的分层嵌套对抗目标,正则化中层表示并辅助生成器训练单流生成器架构:提出可扩展的单流生成器架构,更好地适应联合鉴别器并将生成图像提升到高分辨率多目的对抗损失:采用多
- 机器学习-- 聚类
SunsPlanter
机器学习机器学习聚类人工智能
什么是聚类?Clustering可以简单地说,对有标注的数据分类,就是逻辑回归(属于有监督分类),对无标注的数据分类,就是聚类(属于无监督分类)聚类是一种无监督学习技术,其目标是根据样本之间的相似性将未标记的数据分组。比如,在一个假设的患者研究中,研究人员正在评估一项新的治疗方案。在试验期间,患者每周会报告自身症状的频率以及严重程度。研究人员可以使用聚类分析将对治疗反应相似的患者归为同一类。图1展
- FP16、BF16、INT8、INT4精度模型加载所需显存以及硬件适配的分析
herosunly
大模型精度BF16硬件适配
大家好,我是herosunly。985院校硕士毕业,现担任算法研究员一职,热衷于机器学习算法研究与应用。曾获得阿里云天池比赛第一名,CCF比赛第二名,科大讯飞比赛第三名。拥有多项发明专利。对机器学习和深度学习拥有自己独到的见解。曾经辅导过若干个非计算机专业的学生进入到算法行业就业。希望和大家一起成长进步。 本文主要介绍了FP16、INT8、INT4精度模型加载占用显存大小的分析,希望对学习大
- educoder机器学习 --- 神经网络
木右加木
educoder机器学习神经网络
第1关:神经网络基本概念1、C第2关:激活函数#encoding=utf8defrelu(x):'''x:负无穷到正无穷的实数'''#*********Begin*********#ifx<=0:return0else:returnx#*********End*********#第3关:反向传播算法#encoding=utf8importosimportpandasaspdfromsklearn.
- 智能办公与科研革命:ChatGPT+DeepSeek大模型在论文撰写、数据分析与AI建模中的实践指南
jwwkyjspt
机器学习SCI论文人工智能chatgpt语言模型机器学习
随着人工智能技术的快速发展,大语言模型如ChatGPT和DeepSeek在科研领域的应用正在为科研人员提供强大的支持。这些模型通过深度学习和大规模语料库训练,能够帮助科研人员高效地筛选文献、生成论文内容、进行数据分析和优化机器学习模型。ChatGPT和DeepSeek能够快速理解和生成复杂的语言,帮助研究人员在撰写论文时提高效率,不仅生成高质量的文章内容,还能优化论文结构和语言表达。在数据分析方面
- 【机器学习&深度学习】适合微调的模型选型指南
一叶千舟
深度学习【应用必备常识】深度学习人工智能
目录一、不同规模模型微调适用性二、微调技术类型对显存的影响三、选择建议(根据你的硬件)四、实际模型推荐五、不同模型适合人群六、推荐几个“非常适合微调”的模型七、推荐使用的微调技术八、场景选择示例场景1:智能客服(中文)场景2:法律问答(中文RAG)场景3:医学问答/健康咨询场景4:AI写作助手(中英文)场景5:代码补全/AI编程助手对比总结表九、不同参数模型特点9.1参数规模vs能力9.2微型模型
- 【机器学习&深度学习】本地部署 vs API调用:关键看显存!
一叶千舟
深度学习【应用必备常识】深度学习人工智能
目录一、本地部署VSAPI调用1.模型运行方式2.性能与速度3.成本4.隐私与安全5.何时选择哪种方式?二、为什么推荐本地部署?1️⃣零依赖网络和外部服务,更可靠稳定2️⃣无调用次数限制,更适合高频或批量推理3️⃣避免长期API费用,节省成本4️⃣保护用户隐私和数据安全5️⃣可自定义、深度优化6️⃣加载一次即可复用,低延迟高性能7️⃣离线可用(重要!)三、适合本地部署的情况四、本地部署条件4.1模
- 深度学习 vs 传统机器学习:哪个更适合你的项目?
AI大模型应用之禅
深度学习机器学习人工智能ai
深度学习vs传统机器学习:哪个更适合你的项目?关键词:深度学习、传统机器学习、特征工程、数据量、计算资源、项目选择、算法对比摘要:本文将用"炒菜"和"拼图"等生活案例,从核心原理、适用场景、资源需求等维度对比深度学习与传统机器学习。通过具体代码示例和真实项目场景分析,帮助开发者和企业决策者快速判断:你的项目该选深度学习还是传统机器学习?背景介绍目的和范围随着AI技术普及,"该用深度学习还是传统机器
- scala的option和some
矮蛋蛋
编程scala
原文地址:
http://blog.sina.com.cn/s/blog_68af3f090100qkt8.html
对于学习 Scala 的 Java™ 开发人员来说,对象是一个比较自然、简单的入口点。在 本系列 前几期文章中,我介绍了 Scala 中一些面向对象的编程方法,这些方法实际上与 Java 编程的区别不是很大。我还向您展示了 Scala 如何重新应用传统的面向对象概念,找到其缺点
- NullPointerException
Cb123456
androidBaseAdapter
java.lang.NullPointerException: Attempt to invoke virtual method 'int android.view.View.getImportantForAccessibility()' on a null object reference
出现以上异常.然后就在baidu上
- PHP使用文件和目录
天子之骄
php文件和目录读取和写入php验证文件php锁定文件
PHP使用文件和目录
1.使用include()包含文件
(1):使用include()从一个被包含文档返回一个值
(2):在控制结构中使用include()
include_once()函数需要一个包含文件的路径,此外,第一次调用它的情况和include()一样,如果在脚本执行中再次对同一个文件调用,那么这个文件不会再次包含。
在php.ini文件中设置
- SQL SELECT DISTINCT 语句
何必如此
sql
SELECT DISTINCT 语句用于返回唯一不同的值。
SQL SELECT DISTINCT 语句
在表中,一个列可能会包含多个重复值,有时您也许希望仅仅列出不同(distinct)的值。
DISTINCT 关键词用于返回唯一不同的值。
SQL SELECT DISTINCT 语法
SELECT DISTINCT column_name,column_name
F
- java冒泡排序
3213213333332132
java冒泡排序
package com.algorithm;
/**
* @Description 冒泡
* @author FuJianyong
* 2015-1-22上午09:58:39
*/
public class MaoPao {
public static void main(String[] args) {
int[] mao = {17,50,26,18,9,10
- struts2.18 +json,struts2-json-plugin-2.1.8.1.jar配置及问题!
7454103
DAOspringAjaxjsonqq
struts2.18 出来有段时间了! (貌似是 稳定版)
闲时研究下下! 貌似 sruts2 搭配 json 做 ajax 很吃香!
实践了下下! 不当之处请绕过! 呵呵
网上一大堆 struts2+json 不过大多的json 插件 都是 jsonplugin.34.jar
strut
- struts2 数据标签说明
darkranger
jspbeanstrutsservletScheme
数据标签主要用于提供各种数据访问相关的功能,包括显示一个Action里的属性,以及生成国际化输出等功能
数据标签主要包括:
action :该标签用于在JSP页面中直接调用一个Action,通过指定executeResult参数,还可将该Action的处理结果包含到本页面来。
bean :该标签用于创建一个javabean实例。如果指定了id属性,则可以将创建的javabean实例放入Sta
- 链表.简单的链表节点构建
aijuans
编程技巧
/*编程环境WIN-TC*/ #include "stdio.h" #include "conio.h"
#define NODE(name, key_word, help) \ Node name[1]={{NULL, NULL, NULL, key_word, help}}
typedef struct node { &nbs
- tomcat下jndi的三种配置方式
avords
tomcat
jndi(Java Naming and Directory Interface,Java命名和目录接口)是一组在Java应用中访问命名和目录服务的API。命名服务将名称和对象联系起来,使得我们可以用名称
访问对象。目录服务是一种命名服务,在这种服务里,对象不但有名称,还有属性。
tomcat配置
- 关于敏捷的一些想法
houxinyou
敏捷
从网上看到这样一句话:“敏捷开发的最重要目标就是:满足用户多变的需求,说白了就是最大程度的让客户满意。”
感觉表达的不太清楚。
感觉容易被人误解的地方主要在“用户多变的需求”上。
第一种多变,实际上就是没有从根本上了解了用户的需求。用户的需求实际是稳定的,只是比较多,也比较混乱,用户一般只能了解自己的那一小部分,所以没有用户能清楚的表达出整体需求。而由于各种条件的,用户表达自己那一部分时也有
- 富养还是穷养,决定孩子的一生
bijian1013
教育人生
是什么决定孩子未来物质能否丰盛?为什么说寒门很难出贵子,三代才能出贵族?真的是父母必须有钱,才能大概率保证孩子未来富有吗?-----作者:@李雪爱与自由
事实并非由物质决定,而是由心灵决定。一朋友富有而且修养气质很好,兄弟姐妹也都如此。她的童年时代,物质上大家都很贫乏,但妈妈总是保持生活中的美感,时不时给孩子们带回一些美好小玩意,从来不对孩子传递生活艰辛、金钱来之不易、要懂得珍惜
- oracle 日期时间格式转化
征客丶
oracle
oracle 系统时间有 SYSDATE 与 SYSTIMESTAMP;
SYSDATE:不支持毫秒,取的是系统时间;
SYSTIMESTAMP:支持毫秒,日期,时间是给时区转换的,秒和毫秒是取的系统的。
日期转字符窜:
一、不取毫秒:
TO_CHAR(SYSDATE, 'YYYY-MM-DD HH24:MI:SS')
简要说明,
YYYY 年
MM 月
- 【Scala六】分析Spark源代码总结的Scala语法四
bit1129
scala
1. apply语法
FileShuffleBlockManager中定义的类ShuffleFileGroup,定义:
private class ShuffleFileGroup(val shuffleId: Int, val fileId: Int, val files: Array[File]) {
...
def apply(bucketId
- Erlang中有意思的bug
bookjovi
erlang
代码中常有一些很搞笑的bug,如下面的一行代码被调用两次(Erlang beam)
commit f667e4a47b07b07ed035073b94d699ff5fe0ba9b
Author: Jovi Zhang <
[email protected]>
Date: Fri Dec 2 16:19:22 2011 +0100
erts:
- 移位打印10进制数转16进制-2008-08-18
ljy325
java基础
/**
* Description 移位打印10进制的16进制形式
* Creation Date 15-08-2008 9:00
* @author 卢俊宇
* @version 1.0
*
*/
public class PrintHex {
// 备选字符
static final char di
- 读《研磨设计模式》-代码笔记-组合模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.util.ArrayList;
import java.util.List;
abstract class Component {
public abstract void printStruct(Str
- 利用cmd命令将.class文件打包成jar
chenyu19891124
cmdjar
cmd命令打jar是如下实现:
在运行里输入cmd,利用cmd命令进入到本地的工作盘符。(如我的是D盘下的文件有此路径 D:\workspace\prpall\WEB-INF\classes)
现在是想把D:\workspace\prpall\WEB-INF\classes路径下所有的文件打包成prpall.jar。然后继续如下操作:
cd D: 回车
cd workspace/prpal
- [原创]JWFD v0.96 工作流系统二次开发包 for Eclipse 简要说明
comsci
eclipse设计模式算法工作swing
JWFD v0.96 工作流系统二次开发包 for Eclipse 简要说明
&nb
- SecureCRT右键粘贴的设置
daizj
secureCRT右键粘贴
一般都习惯鼠标右键自动粘贴的功能,对于SecureCRT6.7.5 ,这个功能也已经是默认配置了。
老版本的SecureCRT其实也有这个功能,只是不是默认设置,很多人不知道罢了。
菜单:
Options->Global Options ...->Terminal
右边有个Mouse的选项块。
Copy on Select
Paste on Right/Middle
- Linux 软链接和硬链接
dongwei_6688
linux
1.Linux链接概念Linux链接分两种,一种被称为硬链接(Hard Link),另一种被称为符号链接(Symbolic Link)。默认情况下,ln命令产生硬链接。
【硬连接】硬连接指通过索引节点来进行连接。在Linux的文件系统中,保存在磁盘分区中的文件不管是什么类型都给它分配一个编号,称为索引节点号(Inode Index)。在Linux中,多个文件名指向同一索引节点是存在的。一般这种连
- DIV底部自适应
dcj3sjt126com
JavaScript
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml&q
- Centos6.5使用yum安装mysql——快速上手必备
dcj3sjt126com
mysql
第1步、yum安装mysql
[root@stonex ~]# yum -y install mysql-server
安装结果:
Installed:
mysql-server.x86_64 0:5.1.73-3.el6_5 &nb
- 如何调试JDK源码
frank1234
jdk
相信各位小伙伴们跟我一样,想通过JDK源码来学习Java,比如collections包,java.util.concurrent包。
可惜的是sun提供的jdk并不能查看运行中的局部变量,需要重新编译一下rt.jar。
下面是编译jdk的具体步骤:
1.把C:\java\jdk1.6.0_26\sr
- Maximal Rectangle
hcx2013
max
Given a 2D binary matrix filled with 0's and 1's, find the largest rectangle containing all ones and return its area.
public class Solution {
public int maximalRectangle(char[][] matrix)
- Spring MVC测试框架详解——服务端测试
jinnianshilongnian
spring mvc test
随着RESTful Web Service的流行,测试对外的Service是否满足期望也变的必要的。从Spring 3.2开始Spring了Spring Web测试框架,如果版本低于3.2,请使用spring-test-mvc项目(合并到spring3.2中了)。
Spring MVC测试框架提供了对服务器端和客户端(基于RestTemplate的客户端)提供了支持。
&nbs
- Linux64位操作系统(CentOS6.6)上如何编译hadoop2.4.0
liyong0802
hadoop
一、准备编译软件
1.在官网下载jdk1.7、maven3.2.1、ant1.9.4,解压设置好环境变量就可以用。
环境变量设置如下:
(1)执行vim /etc/profile
(2)在文件尾部加入:
export JAVA_HOME=/home/spark/jdk1.7
export MAVEN_HOME=/ho
- StatusBar 字体白色
pangyulei
status
[[UIApplication sharedApplication] setStatusBarStyle:UIStatusBarStyleLightContent];
/*you'll also need to set UIViewControllerBasedStatusBarAppearance to NO in the plist file if you use this method
- 如何分析Java虚拟机死锁
sesame
javathreadoracle虚拟机jdbc
英文资料:
Thread Dump and Concurrency Locks
Thread dumps are very useful for diagnosing synchronization related problems such as deadlocks on object monitors. Ctrl-\ on Solaris/Linux or Ctrl-B
- 位运算简介及实用技巧(一):基础篇
tw_wangzhengquan
位运算
http://www.matrix67.com/blog/archives/263
去年年底写的关于位运算的日志是这个Blog里少数大受欢迎的文章之一,很多人都希望我能不断完善那篇文章。后来我看到了不少其它的资料,学习到了更多关于位运算的知识,有了重新整理位运算技巧的想法。从今天起我就开始写这一系列位运算讲解文章,与其说是原来那篇文章的follow-up,不如说是一个r
- jsearch的索引文件结构
yangshangchuan
搜索引擎jsearch全文检索信息检索word分词
jsearch是一个高性能的全文检索工具包,基于倒排索引,基于java8,类似于lucene,但更轻量级。
jsearch的索引文件结构定义如下:
1、一个词的索引由=分割的三部分组成: 第一部分是词 第二部分是这个词在多少