Hive分析窗口函数(二) NTILE,ROW_NUMBER,RANK,DENSE_RANK

转载地址:

lxw的大数据田地 » Hive分析窗口函数(二) NTILE,ROW_NUMBER,RANK,DENSE_RANK


本文中介绍前几个序列函数,NTILE,ROW_NUMBER,RANK,DENSE_RANK,下面会一一解释各自的用途。

Hive版本为 apache-hive-0.13.1

注意: 序列函数不支持WINDOW子句。(什么是WINDOW子句,点此查看前面的文章)

数据准备:

    cookie1,2015-04-10,1
    cookie1,2015-04-11,5
    cookie1,2015-04-12,7
    cookie1,2015-04-13,3
    cookie1,2015-04-14,2
    cookie1,2015-04-15,4
    cookie1,2015-04-16,4
    cookie2,2015-04-10,2
    cookie2,2015-04-11,3
    cookie2,2015-04-12,5
    cookie2,2015-04-13,6
    cookie2,2015-04-14,3
    cookie2,2015-04-15,9
    cookie2,2015-04-16,7
     
    CREATE EXTERNAL TABLE lxw1234 (
    cookieid string,
    createtime string,   --day 
    pv INT
    ) ROW FORMAT DELIMITED 
    FIELDS TERMINATED BY ',' 
    stored as textfile location '/tmp/lxw11/';
     
    DESC lxw1234;
    cookieid                STRING 
    createtime              STRING 
    pv INT 
     
    hive> select * from lxw1234;
    OK
    cookie1 2015-04-10      1
    cookie1 2015-04-11      5
    cookie1 2015-04-12      7
    cookie1 2015-04-13      3
    cookie1 2015-04-14      2
    cookie1 2015-04-15      4
    cookie1 2015-04-16      4
    cookie2 2015-04-10      2
    cookie2 2015-04-11      3
    cookie2 2015-04-12      5
    cookie2 2015-04-13      6
    cookie2 2015-04-14      3
    cookie2 2015-04-15      9
    cookie2 2015-04-16      7


NTILE

NTILE(n),用于将分组数据按照顺序切分成n片,返回当前切片值
NTILE不支持ROWS BETWEEN,比如 NTILE(2) OVER(PARTITION BY cookieid ORDER BY createtime ROWS BETWEEN 3 PRECEDING AND CURRENT ROW)
如果切片不均匀,默认增加第一个切片的分布

    SELECT 
    cookieid,
    createtime,
    pv,
    NTILE(2) OVER(PARTITION BY cookieid ORDER BY createtime) AS rn1,	--分组内将数据分成2片
    NTILE(3) OVER(PARTITION BY cookieid ORDER BY createtime) AS rn2,  --分组内将数据分成3片
    NTILE(4) OVER(ORDER BY createtime) AS rn3        --将所有数据分成4片
    FROM lxw1234 
    ORDER BY cookieid,createtime;
     
    cookieid day           pv       rn1     rn2     rn3
    -------------------------------------------------
    cookie1 2015-04-10      1       1       1       1
    cookie1 2015-04-11      5       1       1       1
    cookie1 2015-04-12      7       1       1       2
    cookie1 2015-04-13      3       1       2       2
    cookie1 2015-04-14      2       2       2       3
    cookie1 2015-04-15      4       2       3       3
    cookie1 2015-04-16      4       2       3       4
    cookie2 2015-04-10      2       1       1       1
    cookie2 2015-04-11      3       1       1       1
    cookie2 2015-04-12      5       1       1       2
    cookie2 2015-04-13      6       1       2       2
    cookie2 2015-04-14      3       2       2       3
    cookie2 2015-04-15      9       2       3       4
    cookie2 2015-04-16      7       2       3       4


–比如,统计一个cookie,pv数最多的前1/3的天

    SELECT 
    cookieid,
    createtime,
    pv,
    NTILE(3) OVER(PARTITION BY cookieid ORDER BY pv DESC) AS rn 
    FROM lxw1234;
     
    --rn = 1 的记录,就是我们想要的结果
     
    cookieid day           pv       rn
    ----------------------------------
    cookie1 2015-04-12      7       1
    cookie1 2015-04-11      5       1
    cookie1 2015-04-15      4       1
    cookie1 2015-04-16      4       2
    cookie1 2015-04-13      3       2
    cookie1 2015-04-14      2       3
    cookie1 2015-04-10      1       3
    cookie2 2015-04-15      9       1
    cookie2 2015-04-16      7       1
    cookie2 2015-04-13      6       1
    cookie2 2015-04-12      5       2
    cookie2 2015-04-14      3       2
    cookie2 2015-04-11      3       3
    cookie2 2015-04-10      2       3


ROW_NUMBER

ROW_NUMBER() –从1开始,按照顺序,生成分组内记录的序列
–比如,按照pv降序排列,生成分组内每天的pv名次
ROW_NUMBER() 的应用场景非常多,再比如,获取分组内排序第一的记录;获取一个session中的第一条refer等。

    SELECT 
    cookieid,
    createtime,
    pv,
    ROW_NUMBER() OVER(PARTITION BY cookieid ORDER BY pv desc) AS rn 
    FROM lxw1234;
     
    cookieid day           pv       rn
    ------------------------------------------- 
    cookie1 2015-04-12      7       1
    cookie1 2015-04-11      5       2
    cookie1 2015-04-15      4       3
    cookie1 2015-04-16      4       4
    cookie1 2015-04-13      3       5
    cookie1 2015-04-14      2       6
    cookie1 2015-04-10      1       7
    cookie2 2015-04-15      9       1
    cookie2 2015-04-16      7       2
    cookie2 2015-04-13      6       3
    cookie2 2015-04-12      5       4
    cookie2 2015-04-14      3       5
    cookie2 2015-04-11      3       6
    cookie2 2015-04-10      2       7


RANK 和 DENSE_RANK

—RANK() 生成数据项在分组中的排名,排名相等会在名次中留下空位
—DENSE_RANK() 生成数据项在分组中的排名,排名相等会在名次中不会留下空位

 

    SELECT 
    cookieid,
    createtime,
    pv,
    RANK() OVER(PARTITION BY cookieid ORDER BY pv desc) AS rn1,
    DENSE_RANK() OVER(PARTITION BY cookieid ORDER BY pv desc) AS rn2,
    ROW_NUMBER() OVER(PARTITION BY cookieid ORDER BY pv DESC) AS rn3 
    FROM lxw1234 
    WHERE cookieid = 'cookie1';
     
    cookieid day           pv       rn1     rn2     rn3 
    -------------------------------------------------- 
    cookie1 2015-04-12      7       1       1       1
    cookie1 2015-04-11      5       2       2       2
    cookie1 2015-04-15      4       3       3       3
    cookie1 2015-04-16      4       3       3       4
    cookie1 2015-04-13      3       5       4       5
    cookie1 2015-04-14      2       6       5       6
    cookie1 2015-04-10      1       7       6       7
     
    rn1: 15号和16号并列第3, 13号排第5
    rn2: 15号和16号并列第3, 13号排第4
    rn3: 如果相等,则按记录值排序,生成唯一的次序,如果所有记录值都相等,或许会随机排吧。




你可能感兴趣的:(hive)