Latex, Katex 常用指令总结(持续更)

ϵ \epsilon ϵ - \epsilon
⨁ \bigoplus - \bigoplus
★ \bigstar - \bigstar
∙ \bull - \bull
∙ \bullet - \bullet
∞ \infin - \infin
∇ \nabla - \nabla
⋯ \cdots - \cdots
⋮ \vdots - \vdots
⋱ \ddots - \ddots
… \ldots - \ldots
γ \gamma γ - \gamma
Δ \Delta Δ - \Delta
δ \delta δ - \delta
(1) \tag{1} (1) - \tag{1}
E \mathbb{E} E - \mathbb{E}
∑ 0 1 \sum_0 ^1 01 - \sum_0^1
∑ s ′ a \sum_{s^{'}}^{a} sa - \sum_{s{’}}{a}
∀ \forall - \forall
∈ \in - \in


G t = R t + 1 + R t + 2 + R t + 3 + ⋯ + R T G t = R t + 1 + γ R t + 2 + γ 2 R t + 3 + ⋯ = ∑ k = 0 ∞ γ k R t + k + 1 , 0 ≤ γ ≤ 1 G t = R t + 1 + γ R t + 2 + γ 2 R t + 3 + ⋯ = R t + 1 + γ ( R t + 2 + γ R t + 3 + ⋯   ) = R t + 1 + γ G t + 1 \begin{aligned} G_t&=R_{t+1}+R_{t+2}+R_{t+3}+\cdots+R_T \\ G_t&=R_{t+1}+\gamma R_{t+2}+\gamma^{2} R_{t+3}+\cdots=\sum_{k=0}^\infin \gamma^k R_{t+k+1}, 0≤\gamma≤1 \\ G_t &=R_{t+1}+\gamma R_{t+2}+\gamma^{2} R_{t+3}+\cdots \\ &=R_{t+1}+\gamma (R_{t+2}+\gamma R_{t+3}+ \cdots)\\ &=R_{t+1}+\gamma G_{t+1} \end{aligned} GtGtGt=Rt+1+Rt+2+Rt+3++RT=Rt+1+γRt+2+γ2Rt+3+=k=0γkRt+k+1,0γ1=Rt+1+γRt+2+γ2Rt+3+=Rt+1+γ(Rt+2+γRt+3+)=Rt+1+γGt+1

$$
\begin{aligned}
G_t&=R_{t+1}+R_{t+2}+R_{t+3}+\cdots+R_T  \\
G_t&=R_{t+1}+\gamma R_{t+2}+\gamma^{2} R_{t+3}+\cdots=\sum_{k=0}^\infin \gamma^k R_{t+k+1}, 0≤\gamma≤1  \\
G_t &=R_{t+1}+\gamma R_{t+2}+\gamma^{2} R_{t+3}+\cdots  \\
&=R_{t+1}+\gamma (R_{t+2}+\gamma R_{t+3}+ \cdots)\\
&=R_{t+1}+\gamma G_{t+1} 
\end{aligned}
$$

你可能感兴趣的:(杂谈,katex,latex)