RSA加密算法

参考链接:https://www.cnblogs.com/jiftle/p/7903762.html

 

大部分copy,选了一下。

有个小错误:

(3)明文加密   C≡Me(mod n)  应当是  C≡M^e(mod n) 

 

公式图

RSA加密算法_第1张图片

算法描述:
(1)选择一对不同的、足够大的素数p,q。
(2)计算n=pq。
(3)计算f(n)=(p-1)(q-1),同时对p, q严加保密,不让任何人知道。
(4)找一个与f(n)互质的数e,且1 (5)计算d,使得de≡1 mod f(n)。这个公式也可以表达为d ≡e-1 mod f(n)
这里要解释一下,≡是数论中表示同余的符号。公式中,≡符号的左边必须和符号右边同余,也就是两边模运算结果相同。显而易见,不管f(n)取什么值,符号右边1 mod f(n)的结果都等于1;符号的左边d与e的乘积做模运算后的结果也必须等于1。这就需要计算出d的值,让这个同余等式能够成立。
(6)公钥KU=(e,n),私钥KR=(d,n)。
(7)加密时,先将明文变换成0至n-1的一个整数M。若明文较长,可先分割成适当的组,然后再进行交换。设密文为C,则加密过程为:
(8)解密过程为:

 

小例子

假设用户A需要将明文“key”通过RSA加密后传递给用户B

(1)设计公私密钥(e,n)和(d,n)。
令p=3,q=11,得出n=p×q=3×11=33;f(n)=(p-1)(q-1)=2×10=20;取e=3,(3与20互质)则e×d≡1 mod f(n),即3×d≡1 mod 20。
d怎样取值呢?可以用试算的办法来寻找。试算结果见下表:

  通过试算我们找到,当d=7时,e×d≡1 mod f(n)同余等式成立。因此,可令d=7。从而我们可以设计出一对公私密钥,加密密钥(公钥)为:KU =(e,n)=(3,33),解密密钥(私钥)为:KR =(d,n)=(7,33)。
(2)英文数字化。
  将明文信息数字化,并将每块两个数字分组。假定明文英文字母编码表为按字母顺序排列数值,即:

  则得到分组后的key的明文信息为:11,05,25。
(3)明文加密 
  用户加密密钥(3,33) 将数字化明文分组信息加密成密文。由C≡Me(mod n)得:

  因此,得到相应的密文信息为:11,31,16。
4)密文解密。
  用户B收到密文,若将其解密,只需要计算,即:

  用户B得到明文信息为:11,05,25。根据上面的编码表将其转换为英文,我们又得到了恢复后的原文“key”。 

你可能感兴趣的:(一些小算法)