- 深度学习模型:原理、架构与应用
一ge科研小菜菜
工具深度学习
深度学习(DeepLearning)是机器学习中的一个分支,基于人工神经网络的发展,尤其是多层神经网络的研究,使其在语音识别、图像处理、自然语言处理等领域取得了显著进展。深度学习的核心是通过大量数据的训练,学习到数据的内在结构和模式,并且具备自动从复杂的输入中提取特征的能力。本文将从深度学习的基本原理、常见模型、训练技巧、应用领域及其面临的挑战等方面进行详细探讨,帮助理解深度学习模型如何在现代科技
- 基于深度学习的焊缝缺陷检测识别系统:YOLOv10 + UI界面 + 数据集
深度学习&目标检测实战项目
深度学习YOLOui目标跟踪分类人工智能
1.引言1.1背景介绍焊接是现代工业制造中的重要工艺之一,其质量直接影响产品的安全性、耐用性和可靠性。然而,由于焊接工艺的复杂性,在实际应用中不可避免地会出现焊缝缺陷,如气孔、裂纹、未熔合等。这些缺陷不仅降低了焊接质量,还可能导致严重的安全事故。因此,如何高效、准确地检测焊缝缺陷成为工业领域的重要研究课题。传统的焊缝缺陷检测方法主要依赖于人工经验或简单的图像处理技术。这些方法不仅效率低下,而且受主
- 基于深度学习的钢材表面缺陷检测系统:UI界面 + R-CNN + 数据集
深度学习&目标检测实战项目
R-CNN检测系统深度学习uir语言开发语言计算机视觉cnn人工智能
在制造业中,钢材表面缺陷的检测是保证产品质量和生产效率的关键环节。随着工业自动化水平的提高,传统的人工检测已经无法满足快速、精确的检测要求。基于深度学习的钢材表面缺陷检测系统能够通过计算机视觉自动识别钢材表面的缺陷类型和位置,极大地提升了检测的准确性和效率。本文将详细介绍如何基于深度学习、R-CNN算法和自定义数据集构建一个钢材表面缺陷检测系统。内容涵盖从数据准备、R-CNN模型训练到UI界面设计
- 洛谷题单python解 【算法1-1】模拟与高精度
Keyk__
算法python开发语言
P1009[NOIP1998普及组]阶乘之和deffac(n):ifn==0orn==1:return1else:returnn*fac(n-1)s=int(input())fac_sum=0forjinrange(1,s+1):fac_sum+=fac(j)print(str(fac_sum))
- C语言学习,插入排序
五味香
c语言学习排序算法算法开发语言android数据结构
C语言,插入排序是一种简单直观的排序算法,插入排序是通过构建有序序列,对于未排序数据,在已排序序列中从后向前扫描,找到相应位置并插入。示例://插入排序函数voidinsertionSort(intarr[],intn){for(inti=1;i=0&&arr[j]>key){arr[j+1]=arr[j];j=j-1;}arr[j+1]=key;}}//打印voidprintArray(inta
- java设计模式单件模式_Head First设计模式(5):单件模式
weixin_39822493
java设计模式单件模式
更多的可以参考我的博客,也在陆续更新inghttp://www.hspweb.cn/单件模式确保一个类只有一个实例,并提供一个全局访点。例子:学生的学号生成方案,是在学生注册后,通过录入学生的基本信息,包括入学学年、学院、专业、班级等信息后,保存相应的资料后自动生成的。学号生成器的业务算法为:入学学年(2位)+学院代码(2位)+专业代码(2位)+班级代码(2位)+序号(2位)1.目录image2.
- 基于ThinkPHP 5~8兼容的推荐算法类实现,
极梦网络无忧
自建推荐算法算法机器学习
在现代推荐系统中,随着用户量和物品量的增长,传统的推荐算法可能会面临性能瓶颈。本文将介绍如何基于ThinkPHP实现一个高性能的推荐系统,结合显性反馈(如兴趣选择)、隐性反馈(如观看时长、评论、点赞、搜索等)、行为序列分析和关键词拆分(支持中文)等功能,并通过优化方案支持大规模用户场景。目录推荐系统简介数据库设计推荐算法类的实现优化方案总结与扩展推荐系统简介推荐系统的目标是根据用户的历史行为,预测
- PyTorch torch.logsumexp 详解:数学原理、应用场景与性能优化(中英双语)
阿正的梦工坊
PyTorchDeepLearningpytorch人工智能python
PyTorchtorch.logsumexp详解:数学原理、应用场景与性能优化在深度学习和概率模型中,我们经常需要计算数值稳定的对数概率操作,特别是在处理softmax归一化、对数似然计算、损失函数优化等任务时,直接求和再取对数可能会导致数值溢出。torch.logsumexp正是为了解决这一问题而设计的。在本文中,我们将详细介绍:torch.logsumexp的数学原理它的实际用途为什么它比直接
- 计算机考研之数据结构:大 O 记号
CS创新实验室
考研复习408考研数据结构
《数据结构》不仅是计算机考研408的必考科目,也是很多自命题学校要考的科目。这里将刊登系列文章,对《数据结构》这门课的某些问题进行讲解,供学习者参考。在计算机科学领域,算法的效率至关重要。随着数据规模的不断增大,一个高效的算法能够显著提升系统性能,而低效的算法则可能导致程序运行缓慢甚至无法正常工作。为了准确评估算法的效率,我们需要一种科学的方法来衡量算法随着输入规模增长时的运行时间或空间使用情况。
- Spark MLlib中的机器学习算法及其应用场景
Java资深爱好者
深度学习推荐算法
SparkMLlib是ApacheSpark框架中的一个机器学习库,提供了丰富的机器学习算法和工具,用于处理和分析大规模数据。以下是SparkMLlib中的机器学习算法及其应用场景的详细描述:一、SparkMLlib中的机器学习算法分类算法:逻辑回归:用于二分类问题,通过最大化对数似然函数来估计模型参数。支持向量机(SVM):用于分类和回归问题,通过寻找一个超平面来最大化不同类别之间的间隔。决策树
- 什么是语料清洗、预训练、指令微调、强化学习、内容安全; 什么是megatron,deepspeed,vllm推理加速框架
ZhangJiQun&MXP
教学2021论文2024大模型以及算力人工智能
什么是语料清洗、预训练、指令微调、强化学习、内容安全目录什么是语料清洗、预训练、指令微调、强化学习、内容安全语料清洗预训练指令微调强化学习内容安全什么是megatron,deepspeed,vllm推理加速框架语料清洗语料清洗是对原始文本数据进行处理的过程,旨在去除数据中的噪声、错误和不相关信息,提升数据质量。比如剔除包含大量乱码、格式错误、广告垃圾信息的文本,以及与目标任务无关的内容等。高质量的
- 基于深度学习的入侵检测系统设计与实现
AI天才研究院
AI大模型企业级应用开发实战DeepSeekR1&大数据AI人工智能大模型计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
基于深度学习的入侵检测系统设计与实现文章关键词:深度学习,入侵检测,网络安全,神经网络,特征提取,系统设计文章摘要:随着互联网的快速发展和网络攻击技术的不断演进,网络安全形势日益严峻。传统的入侵检测系统(IDS)面临着检测精度低、适应性差等问题,难以有效应对日益复杂的网络攻击。深度学习作为一种强大的机器学习技术,具有强大的特征学习和模式识别能力,为入侵检测技术带来了新的机遇。本文深入探讨了基于深度
- 实测|用DeepSeek批量生成头条爆款标题,1小时搞定1周工作量!效率提升300%的秘诀全公开
kang_deepsk
AI写作人工智能ai
一、[痛点直击]创作者的标题困境标题内卷:头条每天新增200万条内容,90%的文章因标题平庸被算法“雪藏”。时间黑洞:人工想1个爆款标题平均耗时15分钟,团队日均消耗6小时。数据玄学:模仿热门标题却跑不出量,平台规则变化永远追不上。用户共鸣:“上月写了30篇优质长文,阅读量全不过万,问题竟出在标题上!”——某科技领域创作者自述二、[技术革命]DeepSeek的标题生成黑科技1.爆款基因解码系统实时
- 八大经典排序算法
BUG 劝退师
算法c语言排序算法算法数据结构
八大经典排序算法目录算法概览算法详解冒泡排序选择排序插入排序希尔排序归并排序快速排序堆排序计数排序性能对比1.算法概览排序算法平均时间复杂度空间复杂度稳定性排序方式冒泡排序O(n²)O(1)稳定In-place选择排序O(n²)O(1)不稳定In-place插入排序O(n²)O(1)稳定In-place希尔排序O(nlogn)O(1)不稳定In-place归并排序O(nlogn)O(n)稳定Out
- Vue中虚拟DOM的全面解析
七公子77
vuevue.js前端javascript
一、虚拟DOM的核心概念虚拟DOM(VirtualDOM)是一个轻量级的JavaScript对象,它是对真实DOM的抽象表示。在Vue中,组件模板会被编译成虚拟DOM树,通过Diff算法对比新旧虚拟DOM,计算出最小化的DOM操作,最终批量更新真实DOM。二、为什么需要虚拟DOM?1.直接操作DOM的问题性能瓶颈:DOM操作是浏览器中最昂贵的操作之一,频繁操作会导致性能下降。手动优化困难:开发者需
- 大一的你如何入门TensorFlow
eso1983
tensorflow人工智能python
刚刚迈入大学的你,对计算机编程还比较陌生。对于现在主流人工智能技术架构TensorFlow的学习,需要循序渐进。入门TensorFlow编程需要结合基础知识学习和实践操作。首先可能需要巩固Python基础,特别是NumPy和数据处理相关的库,因为TensorFlow很多操作和这些库有关联。接下来,可能需要了解机器学习的基本概念。TensorFlow毕竟是一个机器学习框架,如果没有基本的理解,直接上
- 程序三大结构详解:顺序、选择、循环
禁小默
C算法数据结构c++pythonjava
目录前言一、顺序结构二、选择结构1.单分支结构2.双分支结构3.多分支结构4.条件匹配结构三、循环结构1.for循环2.while循环3.do-while循环四、总结与建议前言程序设计中,顺序结构、选择结构、循环结构是最基本的控制结构,也是任何程序的核心组成部分。这三种结构可以组合成任意复杂的算法,掌握它们是学习编程的第一步。本文将详细讲解这三种结构的定义、特点,并结合实际示例帮助理解其应用。一、
- ssd训练自己的数据集
reset2021
目标检测目标检测python深度学习人工智能pytorch
基于SSD算法实现对自己数据集的训练与检测。(该专题以操作为主)SSD是一种非常优秀的one-stage目标检测方法,one-stage算法就是目标检测和分类是同时完成的,其主要思路是利用CNN提取特征后,均匀地在图片的不同位置进行密集抽样,抽样时可以采用不同尺度和长宽比,物体分类与预测框的回归同时进行,整个过程只需要一步,所以其优势是速度快。这篇文档主要讲述怎样用SSD算法来实现对自己数据集的训
- 【算法通关村 Day7】递归与二叉树遍历
Ava_J
算法数据结构
递归与二叉树遍历青铜挑战理解递归递归算法是指一个方法在其执行过程中调用自身。它通常用于将一个问题分解为更小的子问题,通过重复调用相同的方法来解决这些子问题,直到达到基准情况(终止条件)。递归算法通常包括两个主要部分:基准情况(也叫递归终止条件):当问题规模足够小,递归可以停止,通常返回一个简单的结果。递归部分:将问题分解成更小的子问题,并在递归过程中调用自身。为了更清晰地说明递归,我给你一个经典的
- 嵌入式人工智能应用-第四章 KNN 算法介绍 3
数贾电子科技
嵌入式人工智能应用人工智能算法linuxknn
KNN算法介绍1KNN介绍1.1基本概念1.1.1主要步骤1.1.2.距离计算:1.1.3进行预测:2分类介绍2.1KNN算法的K值说明2.2K值的选取2.3距离计算2.4KNN算法特点2.5KNN算法流程3实验验证3.1实验代码-具体代码可以从附件下载3.2演示效果1KNN介绍K邻近(K-NearestNeighbors,KNN)是一种广泛使用的监督学习算法,主要用于分类和回归任务。以下是K邻近
- UNet:UNet的损失函数与优化器_2024-07-24_07-32-39.Tex
chenjj4003
游戏开发2深度学习人工智能前端javascriptgithubjava开发语言
UNet:UNet的损失函数与优化器UNet简介UNet的架构UNet是一种广泛应用于图像分割任务的卷积神经网络架构,由OlafRonneberger、PhilippFischer和ThomasBrox在2015年提出。其设计灵感来源于编码器-解码器结构,特别之处在于它在解码器部分引入了跳跃连接(skipconnections),这使得网络能够融合低层的特征细节和高层的语义信息,从而在图像分割任务
- ARCore:ARCore的点云与深度API应用_2024-07-25_20-37-55.Tex
chenjj4003
游戏开发1024程序员节substancepainter贴图android数据库
ARCore:ARCore的点云与深度API应用ARCore简介ARCore的基本概念ARCore是Google开发的一个增强现实(AR)平台,旨在为移动设备提供高精度的AR体验。它通过使用设备的摄像头、传感器和机器学习技术,能够在没有外部标记的情况下,实现对现实世界的理解和交互。ARCore支持Android和iOS设备,允许开发者创建沉浸式的AR应用,无需额外硬件支持。ARCore的核心功能包
- 美国第3代哈希散列算法之SHA3(Keccak)
黄金龙PLUS
Hash算法哈希算法算法密码学人工智能网络安全
目录(1)Keccak算法简介(2)消息填充规则(3)海绵结构的实现过程(4)内部状态及表示方法(5)Keccak-f置换美国第3代哈希散列算法之SHA3(Keccak)(1)Keccak算法简介Keccak算法是美国国家标准与技术研究院(NIST)发起的SHA3竞赛的获胜算法,采用的是新型的海绵结构。根据摘要值长度的不同可以分为Keccak224、Keccak256、Keccak384、Kecc
- Vision Transformer图像分类实现
reset2021
图像分类transformer分类深度学习python
VisionTransformer(ViT)是一种基于Transformer架构的图像分类模型。与传统的卷积神经网络(CNN)不同,ViT将图像分割成多个小块(patches),并将这些小块视为序列输入到Transformer中。以下是使用PyTorch实现VisionTransformer进行图像分类的步骤。1.安装必要的库首先,确保你已经安装了必要的库:pipinstalltorchtorch
- 蓝桥杯学习大纲
ん贤
蓝桥杯算法数据结构
(致酷德与热爱算法、编程的小伙伴们)在查阅了相当多的资料后,发现没有那篇博客、文章很符合我们备战蓝桥杯的学习路径。所以,干脆自己整理一篇,欢迎大家补充!一、蓝桥必备高频考点我们以此为重点学习方向:1.基础算法枚举模拟贪心递归分治构造前缀和差分2.搜索与排序线性搜索二分法BFSDFS回溯剪枝深搜优化记忆化搜索位运算冒泡排序归并排序快速排序桶排序3.动态规划编辑距离最长不重复子串整数背包矩阵连乘最长公
- 【Python 语法】heapq 模块
一杯水果茶!
python
堆的应用场景主要功能示例:使用`heapq`实现优先队列heapq是Python标准库中用于实现堆队列(heapqueue)算法的模块。堆队列是一个基于堆(heap)数据结构的优先队列,它能在O(logn)时间内执行插入、删除最小元素等操作。Python中的heapq模块实现的是一个最小堆(min-heap),即堆顶元素是堆中的最小元素。堆的应用场景优先队列:heapq可以用来实现优先队列,按优先
- 神经网络模型训练中的相关概念:Epoch,Batch,Batch size,Iteration
一杯水果茶!
视觉与网络神经网络batchepochIteration
神经网络模型训练中的相关概念如下:Epoch(时期/回合):当一个完整的数据集通过了神经网络一次并且返回了一次,这个过程称为一次epoch。也就是说,所有训练样本在神经网络中都进行了一次正向传播和一次反向传播。一个epoch是将所有训练样本训练一次的过程。Batch(批/一批样本):将整个训练样本分成若干个batch。每个batch中包含一部分训练样本,每次送入网络中进行训练的是一个batch。B
- 高斯混合模型(GMM)与K均值算法(K-means)算法的异同
路野yue
人工智能机器学习聚类
高斯混合模型(GaussianMixtureModel,GMM)和K均值(K-Means)算法都是常用于聚类分析的无监督学习方法,虽然它们的目标都是将数据分成若干个类别或簇,但在实现方法、假设和适用场景上有所不同。1.模型假设K均值(K-Means):假设每个簇的样本点在簇中心附近呈均匀分布,通常是球形的(即每个簇的数据点彼此之间的距离相对均匀,具有相同的方差)。每个簇通过一个中心点来表示(即质心
- 初识pytorch
m0_73286250
pytorch人工智能python
一、AI发展史二、什么是深度学习深度学习是机器学习的一个子集。为了更好地理解这种关系,我们可以将它们放在人工智能(AI)的大框架中来看。机器学习是实现人工智能的一种途径,深度学习是机器学习的一个子集,也就是说深度学习是实现机器学习的一种方法。与机器学习算法的主要区别如下图所示:三、扩展1.使用场景1)图像识别和处理2)自然语言处理(NLP)3)音频处理4)视频分析5)游戏和仿真6)自动驾驶汽车7)
- NVIDIA B200:高性能 AI 计算的未来
知识大胖
NVIDIAGPU和大语言模型开发教程人工智能nvidiab200
简介对于一直关注人工智能和机器学习快速发展的人来说,新硬件的发布总是备受期待。每一代新处理器和加速器都有可能极大地改变我们开发和部署大规模机器学习模型的方式。NVIDIA长期处于人工智能硬件开发的最前沿,它再次凭借由Blackwell架构驱动的B200提高了标准。最近的MLPerf基准测试提供了B200的首批可靠数据,结果非常出色。在Llama270B型号上运行推理时,B200每秒可处理11,26
- Enum 枚举
120153216
enum枚举
原文地址:http://www.cnblogs.com/Kavlez/p/4268601.html Enumeration
于Java 1.5增加的enum type...enum type是由一组固定的常量组成的类型,比如四个季节、扑克花色。在出现enum type之前,通常用一组int常量表示枚举类型。比如这样:
public static final int APPLE_FUJI = 0
- Java8简明教程
bijian1013
javajdk1.8
Java 8已于2014年3月18日正式发布了,新版本带来了诸多改进,包括Lambda表达式、Streams、日期时间API等等。本文就带你领略Java 8的全新特性。
一.允许在接口中有默认方法实现
Java 8 允许我们使用default关键字,为接口声明添
- Oracle表维护 快速备份删除数据
cuisuqiang
oracle索引快速备份删除
我知道oracle表分区,不过那是数据库设计阶段的事情,目前是远水解不了近渴。
当前的数据库表,要求保留一个月数据,且表存在大量录入更新,不存在程序删除。
为了解决频繁查询和更新的瓶颈,我在oracle内根据需要创建了索引。但是随着数据量的增加,一个半月数据就要超千万,此时就算有索引,对高并发的查询和更新来说,让然有所拖累。
为了解决这个问题,我一般一个月会进行一次数据库维护,主要工作就是备
- java多态内存分析
麦田的设计者
java内存分析多态原理接口和抽象类
“ 时针如果可以回头,熟悉那张脸,重温嬉戏这乐园,墙壁的松脱涂鸦已经褪色才明白存在的价值归于记忆。街角小店尚存在吗?这大时代会不会牵挂,过去现在花开怎么会等待。
但有种意外不管痛不痛都有伤害,光阴远远离开,那笑声徘徊与脑海。但这一秒可笑不再可爱,当天心
- Xshell实现Windows上传文件到Linux主机
被触发
windows
经常有这样的需求,我们在Windows下载的软件包,如何上传到远程Linux主机上?还有如何从Linux主机下载软件包到Windows下;之前我的做法现在看来好笨好繁琐,不过也达到了目的,笨人有本方法嘛;
我是怎么操作的:
1、打开一台本地Linux虚拟机,使用mount 挂载Windows的共享文件夹到Linux上,然后拷贝数据到Linux虚拟机里面;(经常第一步都不顺利,无法挂载Windo
- 类的加载ClassLoader
肆无忌惮_
ClassLoader
类加载器ClassLoader是用来将java的类加载到虚拟机中,类加载器负责读取class字节文件到内存中,并将它转为Class的对象(类对象),通过此实例的 newInstance()方法就可以创建出该类的一个对象。
其中重要的方法为findClass(String name)。
如何写一个自己的类加载器呢?
首先写一个便于测试的类Student
- html5写的玫瑰花
知了ing
html5
<html>
<head>
<title>I Love You!</title>
<meta charset="utf-8" />
</head>
<body>
<canvas id="c"></canvas>
- google的ConcurrentLinkedHashmap源代码解析
矮蛋蛋
LRU
原文地址:
http://janeky.iteye.com/blog/1534352
简述
ConcurrentLinkedHashMap 是google团队提供的一个容器。它有什么用呢?其实它本身是对
ConcurrentHashMap的封装,可以用来实现一个基于LRU策略的缓存。详细介绍可以参见
http://code.google.com/p/concurrentlinke
- webservice获取访问服务的ip地址
alleni123
webservice
1. 首先注入javax.xml.ws.WebServiceContext,
@Resource
private WebServiceContext context;
2. 在方法中获取交换请求的对象。
javax.xml.ws.handler.MessageContext mc=context.getMessageContext();
com.sun.net.http
- 菜鸟的java基础提升之道——————>是否值得拥有
百合不是茶
1,c++,java是面向对象编程的语言,将万事万物都看成是对象;java做一件事情关注的是人物,java是c++继承过来的,java没有直接更改地址的权限但是可以通过引用来传值操作地址,java也没有c++中繁琐的操作,java以其优越的可移植型,平台的安全型,高效性赢得了广泛的认同,全世界越来越多的人去学习java,我也是其中的一员
java组成:
- 通过修改Linux服务自动启动指定应用程序
bijian1013
linux
Linux中修改系统服务的命令是chkconfig (check config),命令的详细解释如下: chkconfig
功能说明:检查,设置系统的各种服务。
语 法:chkconfig [ -- add][ -- del][ -- list][系统服务] 或 chkconfig [ -- level <</SPAN>
- spring拦截器的一个简单实例
bijian1013
javaspring拦截器Interceptor
Purview接口
package aop;
public interface Purview {
void checkLogin();
}
Purview接口的实现类PurviesImpl.java
package aop;
public class PurviewImpl implements Purview {
public void check
- [Velocity二]自定义Velocity指令
bit1129
velocity
什么是Velocity指令
在Velocity中,#set,#if, #foreach, #elseif, #parse等,以#开头的称之为指令,Velocity内置的这些指令可以用来做赋值,条件判断,循环控制等脚本语言必备的逻辑控制等语句,Velocity的指令是可扩展的,即用户可以根据实际的需要自定义Velocity指令
自定义指令(Directive)的一般步骤
&nbs
- 【Hive十】Programming Hive学习笔记
bit1129
programming
第二章 Getting Started
1.Hive最大的局限性是什么?一是不支持行级别的增删改(insert, delete, update)二是查询性能非常差(基于Hadoop MapReduce),不适合延迟小的交互式任务三是不支持事务2. Hive MetaStore是干什么的?Hive persists table schemas and other system metadata.
- nginx有选择性进行限制
ronin47
nginx 动静 限制
http {
limit_conn_zone $binary_remote_addr zone=addr:10m;
limit_req_zone $binary_remote_addr zone=one:10m rate=5r/s;...
server {...
location ~.*\.(gif|png|css|js|icon)$ {
- java-4.-在二元树中找出和为某一值的所有路径 .
bylijinnan
java
/*
* 0.use a TwoWayLinkedList to store the path.when the node can't be path,you should/can delete it.
* 1.curSum==exceptedSum:if the lastNode is TreeNode,printPath();delete the node otherwise
- Netty学习笔记
bylijinnan
javanetty
本文是阅读以下两篇文章时:
http://seeallhearall.blogspot.com/2012/05/netty-tutorial-part-1-introduction-to.html
http://seeallhearall.blogspot.com/2012/06/netty-tutorial-part-15-on-channel.html
我的一些笔记
===
- js获取项目路径
cngolon
js
//js获取项目根路径,如: http://localhost:8083/uimcardprj
function getRootPath(){
//获取当前网址,如: http://localhost:8083/uimcardprj/share/meun.jsp
var curWwwPath=window.document.locati
- oracle 的性能优化
cuishikuan
oracleSQL Server
在网上搜索了一些Oracle性能优化的文章,为了更加深层次的巩固[边写边记],也为了可以随时查看,所以发表这篇文章。
1.ORACLE采用自下而上的顺序解析WHERE子句,根据这个原理,表之间的连接必须写在其他WHERE条件之前,那些可以过滤掉最大数量记录的条件必须写在WHERE子句的末尾。(这点本人曾经做过实例验证过,的确如此哦!
- Shell变量和数组使用详解
daizj
linuxshell变量数组
Shell 变量
定义变量时,变量名不加美元符号($,PHP语言中变量需要),如:
your_name="w3cschool.cc"
注意,变量名和等号之间不能有空格,这可能和你熟悉的所有编程语言都不一样。同时,变量名的命名须遵循如下规则:
首个字符必须为字母(a-z,A-Z)。
中间不能有空格,可以使用下划线(_)。
不能使用标点符号。
不能使用ba
- 编程中的一些概念,KISS、DRY、MVC、OOP、REST
dcj3sjt126com
REST
KISS、DRY、MVC、OOP、REST (1)KISS是指Keep It Simple,Stupid(摘自wikipedia),指设计时要坚持简约原则,避免不必要的复杂化。 (2)DRY是指Don't Repeat Yourself(摘自wikipedia),特指在程序设计以及计算中避免重复代码,因为这样会降低灵活性、简洁性,并且可能导致代码之间的矛盾。 (3)OOP 即Object-Orie
- [Android]设置Activity为全屏显示的两种方法
dcj3sjt126com
Activity
1. 方法1:AndroidManifest.xml 里,Activity的 android:theme 指定为" @android:style/Theme.NoTitleBar.Fullscreen" 示例: <application
- solrcloud 部署方式比较
eksliang
solrCloud
solrcloud 的部署其实有两种方式可选,那么我们在实践开发中应该怎样选择呢? 第一种:当启动solr服务器时,内嵌的启动一个Zookeeper服务器,然后将这些内嵌的Zookeeper服务器组成一个集群。 第二种:将Zookeeper服务器独立的配置一个集群,然后将solr交给Zookeeper进行管理
谈谈第一种:每启动一个solr服务器就内嵌的启动一个Zoo
- Java synchronized关键字详解
gqdy365
synchronized
转载自:http://www.cnblogs.com/mengdd/archive/2013/02/16/2913806.html
多线程的同步机制对资源进行加锁,使得在同一个时间,只有一个线程可以进行操作,同步用以解决多个线程同时访问时可能出现的问题。
同步机制可以使用synchronized关键字实现。
当synchronized关键字修饰一个方法的时候,该方法叫做同步方法。
当s
- js实现登录时记住用户名
hw1287789687
记住我记住密码cookie记住用户名记住账号
在页面中如何获取cookie值呢?
如果是JSP的话,可以通过servlet的对象request 获取cookie,可以
参考:http://hw1287789687.iteye.com/blog/2050040
如果要求登录页面是html呢?html页面中如何获取cookie呢?
直接上代码了
页面:loginInput.html
代码:
<!DOCTYPE html PUB
- 开发者必备的 Chrome 扩展
justjavac
chrome
Firebug:不用多介绍了吧https://chrome.google.com/webstore/detail/bmagokdooijbeehmkpknfglimnifench
ChromeSnifferPlus:Chrome 探测器,可以探测正在使用的开源软件或者 js 类库https://chrome.google.com/webstore/detail/chrome-sniffer-pl
- 算法机试题
李亚飞
java算法机试题
在面试机试时,遇到一个算法题,当时没能写出来,最后是同学帮忙解决的。
这道题大致意思是:输入一个数,比如4,。这时会输出:
&n
- 正确配置Linux系统ulimit值
字符串
ulimit
在Linux下面部 署应用的时候,有时候会遇上Socket/File: Can’t open so many files的问题;这个值也会影响服务器的最大并发数,其实Linux是有文件句柄限制的,而且Linux默认不是很高,一般都是1024,生产服务器用 其实很容易就达到这个数量。下面说的是,如何通过正解配置来改正这个系统默认值。因为这个问题是我配置Nginx+php5时遇到了,所以我将这篇归纳进
- hibernate调用返回游标的存储过程
Supanccy2013
javaDAOoracleHibernatejdbc
注:原创作品,转载请注明出处。
上篇博文介绍的是hibernate调用返回单值的存储过程,本片博文说的是hibernate调用返回游标的存储过程。
此此扁博文的存储过程的功能相当于是jdbc调用select 的作用。
1,创建oracle中的包,并在该包中创建的游标类型。
---创建oracle的程
- Spring 4.2新特性-更简单的Application Event
wiselyman
application
1.1 Application Event
Spring 4.1的写法请参考10点睛Spring4.1-Application Event
请对比10点睛Spring4.1-Application Event
使用一个@EventListener取代了实现ApplicationListener接口,使耦合度降低;
1.2 示例
包依赖
<p