多迪技术部向你解答菜鸟如何能写python爬虫?

作为一个零基础起步之前连python都不会,现在学习一段时间总算掌握基础,开始向上进阶的菜鸟, 多迪技术部向你解答菜鸟如何能写python爬虫?

难上手:刚开始对爬虫不是很了解,又没有任何的计算机、编程基础,确实有点懵逼。从哪里开始,哪些是最开始应该学的,哪些应该等到有一定基础之后再学,也没个清晰的概念。看了一些教程和书籍,了解基本的数据结构,然后是列表、字典、元组,各种函数和控制语句。学了一段时间,才发现自己还没接触到真正的爬虫呢,而且纯理论学习很快就忘了,回去复习又太浪费时间。

直接上手:怕出错,装了比较保险的 Anaconda,用自带的 Jupyter Notebook 作为IDE来写代码。看到很多人说因为配置环境出各种BUG,简直庆幸。很多时候打败你的,并不是事情本身,说的就是爬虫配置环境这事儿。Python 的爬虫可以用很多包或者框架来实现,简单好用,写的代码少。

爬虫渐入佳境:有了一些套路和形式,就会有目标,可以接着往下学了。还是豆瓣,自己去摸索爬取更多的信息,爬取多部电影,多个页面。这个时候就发现基础不足了,再回去补充 Python 的基础知识,就很有针对性,而且能马上能用于解决问题,也就理解得更深刻。这样直到把豆瓣的TOP250图书和电影爬下来,基本算是了解了一个爬虫的基本过程了。

Scrapy框架:有了 requests+xpath 和抓包大法,就可以做很多事情了,豆瓣各分类下的电影,58同城、知乎、拉勾这些网站基本都没问题。不过,当爬取的数据量级很大,而且需要灵活地处理各个模块的话,会显得很力不从心。了解到强大的 Scrapy 框架,它不仅能便捷地构建 Request,还有强大的 Selector 能够方便地解析 Response,然而最让人惊喜的还是它超高的性能,可以将爬虫工程化、模块化。

分布式爬虫:基本上很大一部分的网页都能爬了,瓶颈就集中到爬取大规模数据的效率。因为学了 Scrapy,于是自然地接触到一个很厉害的名字:分布式爬虫。分布式这个东西,一听不明觉厉,感觉很恐怖,但其实就是利用多线程的原理让多个爬虫同时工作,除了前面学过的 Scrapy 和 MongoDB,好像还需要了解 Redis。Scrapy 用于做基本的页面爬取,MongoDB 用于存储爬取的数据,Redis 则用来存储要爬取的网页队列,也就是任务队列。

你可能感兴趣的:(python,爬虫,数据库)