- 5分钟搞定Spring AI支持SpringBoot快速构建人工智能AI应用_springai_springboot_AI应用
web17886480312
spring人工智能springboot
通过阅读这篇文章,你将了解SpringAI,它是一个借鉴了langchain的设计理念,并结合Java的优势,为开发者提供易于替换实现的统一接口。此外,文章还基于SpringAI的模型调用和Prompt模板,构建一个可操作的示例,让你可以快速的了解具体怎么在springboot的环境下使用springai来构建人工智能AI的应用SpringAI:简化Java大模型集成的统一框架在Java调用大模型
- 3.ChatClient&Chat Model简化与AI模型的交互
laopeng301
SpringAI人工智能交互
1.ChatModel对话模型是一种利用人工智能技术,能够生成类似人类对话响应的工具。通过向预训练语言模型(如GPT等)发送提示词或部分对话内容,模型依据自身训练数据及对自然语言模式的理解,生成对话的延续或完整回复,并返回给应用程序。应用程序可以将其呈现给用户或用于进一步处理。SpringAIChatModelAPI设计目标为简单且可移植的接口,用于与各种人工智能模型进行交互,使开发人员能够在不同
- 《智守数据堡垒——AI驱动的MySQL数据治理合规框架》
墨夶
数据库学习资料2人工智能mysql数据库
在当今数字化转型加速的时代,企业面临着前所未有的数据挑战。一方面,海量的数据为企业带来了巨大的商业价值;另一方面,如何确保这些数据的安全性、一致性和合法性成为了亟待解决的问题。尤其是在金融、医疗等高度监管行业中,任何数据泄露或不当使用都可能导致严重的法律后果和社会影响。为此,构建一个既高效又能满足法律法规要求的数据治理体系显得尤为重要。今天,我们将探讨一种创新性的解决方案——利用人工智能(AI)技
- Pytorch 三小时极限入门教程
power-辰南
人工智能深度学习pytorch人工智能
一、引言在当今的人工智能领域,深度学习占据了举足轻重的地位。而Pytorch作为一款广受欢迎的深度学习框架,以其简洁、灵活的特性,吸引了大量开发者投身其中。无论是科研人员探索前沿的神经网络架构,还是工程师将深度学习技术落地到实际项目,Pytorch都提供了强大的支持。本教程将带你从零基础开始,一步步深入了解Pytorch的核心知识,助你顺利踏上深度学习的征程。二、Pytorch基础环境搭建安装An
- NVIDIA下一代Hopper架构曝光,采用5nm工艺 晶体管超1400亿
Java小海.
架构人工智能后端程序人生java
据媒体报道,NVIDIA下一代主要面向高性能计算、人工智能等Hopper架构,将会采用5nm工艺制程,晶体管多达1400亿个,面积核心达到了900平方毫米,是有史以来最大的GPU。作为参考,NVIDIA自家旗舰Ampere架构的A100为542亿个晶体管(每平方毫米约为6560万个晶体管),AMD阵营中采用Aldebaran架构的InstinctMI200系列为582亿个晶体管(每平方米约为736
- NVIDIA Hopper解说
白总Server
redis数据库缓存rustmongodb大数据数据仓库
NVIDIAHopper架构是NVIDIA推出的面向高性能计算(HPC)和人工智能(AI)的最新一代GPU架构。它代表了NVIDIA在加速计算领域的最新进展,旨在为AI训练和推理、HPC应用提供前所未有的性能提升。NVIDIAHopper架构和基于该架构的GPU产品H100的详细信息:NVIDIAHopper架构技术特点:第四代TensorCore:Hopper架构引入了第四代TensorCore
- LLMs,即大型语言模型
maopig
AI语言模型人工智能自然语言处理
LLMs,即大型语言模型,是一类基于深度学习的人工智能模型,它们通过海量的数据和大量的计算资源进行训练,可以理解和生成自然语言。LLMs的核心架构是Transformer,其关键在于自注意力机制,使得模型能够同时对输入的所有位置进行“关注”,从而更好地捕捉长距离的语义依赖关系。LLMs在众多领域都有广泛的应用,如自然语言理解(NLU),语言生成,以及语音识别和合成等。例如,它们能够理解人类的语言
- 第79期 | GPTSecurity周报
云起无垠
GPTSecurityAIGCgpt
GPTSecurity是一个涵盖了前沿学术研究和实践经验分享的社区,集成了生成预训练Transformer(GPT)、人工智能生成内容(AIGC)以及大语言模型(LLM)等安全领域应用的知识。在这里,您可以找到关于GPT/AIGC/LLM最新的研究论文、博客文章、实用的工具和预设指令(Prompts)。现为了更好地知悉近一周的贡献内容,现总结如下。SecurityPapers1.TrojanWhi
- 第60期 | GPTSecurity周报
云起无垠
GPTSecurity人工智能语言模型网络安全
GPTSecurity是一个涵盖了前沿学术研究和实践经验分享的社区,集成了生成预训练Transformer(GPT)、人工智能生成内容(AIGC)以及大语言模型(LLM)等安全领域应用的知识。在这里,您可以找到关于GPT/AIGC/LLM最新的研究论文、博客文章、实用的工具和预设指令(Prompts)。现为了更好地知悉近一周的贡献内容,现总结如下。SecurityPapers1.映射你的模型:评估
- 大语言模型(LLMs)入门教程(非常详细)从零基础入门到精通,看完这一篇就够了
大模型零基础教程
语言模型人工智能自然语言处理大模型
大语言模型(LLMs)作为人工智能(AI)领域的一项突破性发展,已经改变了自然语言处理(NLP)和机器学习(ML)应用的面貌。这些模型,包括OpenAI的GPT-4o和Google的gemini系列等,已经展现出了在理解和生成类人文本方面的令人印象深刻的能力,使它们成为各行各业的宝贵工具。如下这份指南将涵盖LLMs的基础知识、训练过程、用例和未来趋势……一.WhatareLargeLanguage
- 1.8 GPT-4:开创人工智能的新纪元
少林码僧
AI大模型应用实战专栏人工智能
GPT-4:开创人工智能的新纪元自从OpenAI推出GPT-4以来,人工智能领域经历了显著的突破。作为“生成预训练转换器”家族中的最新成员,GPT-4不仅在功能上进行了提升,更在语言处理能力、理解深度以及适应性方面带来了全新的变革。本篇文章将深入探讨GPT-4的特点、创新以及它如何定义未来人工智能技术的发展。GPT-4的技术亮点1.规模与深度的进一步提升GPT-4的规模比前代模型更大,训练数据量和
- 第83期 | GPTSecurity周报
云起无垠
GPTSecurity人工智能网络安全
GPTSecurity是一个涵盖了前沿学术研究和实践经验分享的社区,集成了生成预训练Transformer(GPT)、人工智能生成内容(AIGC)以及大语言模型(LLM)等安全领域应用的知识。在这里,您可以找到关于GPT/AIGC/LLM最新的研究论文、博客文章、实用的工具和预设指令(Prompts)。现为了更好地知悉近一周的贡献内容,现总结如下。SecurityPapers1.混乱中建立秩序:人
- 【Python】已解决:ModuleNotFoundError: No module named ‘sklearn‘
屿小夏
pythonsklearn人工智能
个人简介:某不知名博主,致力于全栈领域的优质博客分享|用最优质的内容带来最舒适的阅读体验!文末获取免费IT学习资料!文末获取更多信息精彩专栏推荐订阅收藏专栏系列直达链接相关介绍书籍分享点我跳转书籍作为获取知识的重要途径,对于IT从业者来说更是不可或缺的资源。不定期更新IT图书,并在评论区抽取随机粉丝,书籍免费包邮到家AI前沿点我跳转探讨人工智能技术领域的最新发展和创新,涵盖机器学习、深度学习、自然
- PyTorch机器学习与深度学习技术方法
Teacher.chenchong
机器学习python开发语言
近年来,随着AlphaGo、无人驾驶汽车、医学影像智慧辅助诊疗、ImageNet竞赛等热点事件的发生,人工智能迎来了新一轮的发展浪潮。尤其是深度学习技术,在许多行业都取得了颠覆性的成果。另外,近年来,Pytorch深度学习框架受到越来越多科研人员的关注和喜爱。Python基础知识串讲1、Python环境搭建(Python软件下载、安装与版本选择;PyCharm下载、安装;Python之HelloW
- 基于生成式人工智能的网联自动驾驶:通感融合决策技术
罗伯特之技术屋
行业信息处理技术与政策研究专栏人工智能自动驾驶机器学习
【摘要】探讨了生成式人工智能在网联自动驾驶技术中的潜在价值。现有研究主要侧重于传统感知决策和车联网技术,但却忽视了生成式人工智能在推动自动驾驶方面的重要作用。首先讨论了生成式人工智能技术如何提高自动驾驶决策、训练、感知和导航等模块的性能,接着探讨了其在融合了语义通信、通感一体和新型空口技术的下一代车联网中的角色,然后提出了基于人工智能代理的网联自动驾驶模型,最后强调生成式人工智能是实现车辆高级别自
- 人工智能英语学习笔记
「已注销」
基础篇单词mythologyn.ancientmythsingeneral;ideasthatmanypeoplethinkaretruebutthatdonotexistorarefalse神话Examples:AsatyrishalfmanandhalfgoatinGreekandRomanmythology.在希腊和罗马神话中,森林之神是半人半羊的样子。Thishasbeenwellillu
- 从小白到高手:人工智能学习中的挑战与突破
博雅智信
人工智能深度学习机器学习python大语言模型
引言:人工智能学习之路充满挑战学习过程中常见的问题与困境环境安装与配置问题简单报错反复调试,时间浪费大学习进度慢,难以找到合适的方向网上资料过多,选择困难导师催进度,任务压力大不敢多问:与同事、师兄师姐的尴尬理论与实践脱节,缺乏实战经验专注力不足,容易被干扰找一个师傅带着的好处高效解决问题,避免走弯路个性化学习路线与系统化知识框架实战经验的传授与导师的成长指导1.引言:人工智能学习之路充满挑战人工
- 文秘要学计算机吗,高考志愿:计算机专业和文秘专业哪个适合女生?
weixin_39707851
文秘要学计算机吗
原标题:高考志愿:计算机专业和文秘专业哪个适合女生?肯定是文秘专业更加适合女生吧,这对绝大部分女生来说是适用的。其实目前对高中毕业之后读大专的话,能够选择的热门专业不多。目前这个文秘类的专业,像这种速度方向的专业的话,还算是比较热门的。对于绝大部分大专生而言,尤其是女生而言是比较适合报考这种文秘类的专业的。因为目前来说像文秘类这种专业,社会上的需求比较大的。虽然目前有出现这种人工智能方面的软件,减
- 计算机专业毕业可以做文秘吗,高考志愿:计算机专业和文秘专业哪个适合女生?...
ShuYini
计算机专业毕业可以做文秘吗
原标题:高考志愿:计算机专业和文秘专业哪个适合女生?肯定是文秘专业更加适合女生吧,这对绝大部分女生来说是适用的。其实目前对高中毕业之后读大专的话,能够选择的热门专业不多。目前这个文秘类的专业,像这种速度方向的专业的话,还算是比较热门的。对于绝大部分大专生而言,尤其是女生而言是比较适合报考这种文秘类的专业的。因为目前来说像文秘类这种专业,社会上的需求比较大的。虽然目前有出现这种人工智能方面的软件,减
- 华为 Ascend 平台 YOLOv5 目标检测推理教程
Lunar*
目标检测华为YOLO目标检测
1.背景介绍随着人工智能技术的快速发展,目标检测在智能安防、自动驾驶、工业检测等领域中扮演了重要角色。YOLOv5是一种高效的目标检测模型,凭借其速度和精度的平衡广受欢迎。华为Ascend推理框架(ACL)是AscendCANN软件栈的核心组件,专为AscendAI加速硬件(如Atlas300I)设计,可实现高性能的深度学习推理。在本文中,我们将介绍如何基于华为AscendACL推理框架对YOLO
- Python学习路线
Python_JC
python
Python是一门易学易用的编程语言,广泛应用于数据处理、Web开发、人工智能、自动化运维、游戏开发等领域。本篇文章将介绍Python的学习路线以及一些值得参考的书籍。Python学习路线Python的学习路线主要包括以下几个方面:掌握Python基础知识:了解变量、数据类型、表达式、流程控制、函数、模块等基础概念。学习Python面向对象编程:学习类、对象、继承、多态等面向对象编程的概念和技术。
- 【2025最新计算机毕业设计】基于SSM的旅游与自然保护平台【提供源码+答辩PPT+文档+项目部署】
万码堂源码
计算机毕设精品实战案例实战项目源码课程设计vue.js前端计算机毕业设计毕设项目springboot
作者简介:✌CSDN新星计划导师、Java领域优质创作者、掘金/华为云/阿里云/InfoQ等平台优质作者、专注于Java技术领域和学生毕业项目实战,高校老师/讲师/同行前辈交流。✌主要内容:Java项目、Python项目、前端项目、PHP、ASP.NET、人工智能与大数据、单片机开发、物联网设计与开发设计、简历模板、学习资料、面试题库、技术互助、就业指导等。业务范围:免费功能设计、开题报告、任务书
- 【源码+文档】基于SpringBoot+Vue旅游网站系统【提供源码+答辩PPT+参考文档+项目部署】
万码堂源码
实战项目源码计算机毕设精品实战案例springbootvue.js旅游
作者简介:✌CSDN新星计划导师、Java领域优质创作者、掘金/华为云/阿里云/InfoQ等平台优质作者、专注于Java技术领域和学生毕业项目实战,高校老师/讲师/同行前辈交流。✌主要内容:Java项目、Python项目、前端项目、PHP、ASP.NET、人工智能与大数据、单片机开发、物联网设计与开发设计、简历模板、学习资料、面试题库、技术互助、就业指导等。业务范围:免费功能设计、开题报告、任务书
- 人工智能领域单词:英文解释
周杰伦_Jay
人工智能深度学习神经网络中文分词全文检索
目录1、前言2、单词组1:15个3、单词组2:15个4、单词组3:15个5、单词组4:15个6、单词组5:15个1、前言亲爱的家人们,创作很不容易,若对您有帮助的话,请点赞收藏加关注哦,您的关注是我持续创作的动力,谢谢大家!有问题请私信或联系邮箱:
[email protected]、单词组1:15个1、人工智能(ArtificialIntelligence,AI):atechnologythatsi
- 华为CANN架构与Ascend C算子开发
z1931195
华为
CANN架构CANN(ComputeArchitectureforNeuralNetworks)是华为专为应对人工智能场景而推出的一种新型异构计算架构。在当前快速发展的AI技术背景下,CANN致力于提供一种高效且灵活的解决方案,以支持多种AI框架的应用。其设计不仅仅关注于上层应用的兼容性,同时也服务于底层AI处理器的优化和编程需求,发挥了承上启下的关键作用,成为华为昇腾AI处理器计算效率提升的核心
- 探索极致AI性能:昇腾NPU与PyTorch的完美融合 —— Ascend Extension for PyTorch
尤琦珺Bess
探索极致AI性能:昇腾NPU与PyTorch的完美融合——AscendExtensionforPyTorch去发现同类优质开源项目:https://gitcode.com/项目简介在人工智能领域,高效灵活的框架与强大的硬件加速器是实现先进算法的关键组合。AscendExtensionforPyTorch插件,即torch_npu,正是这样一个解决方案,它无缝对接PyTorch框架,将华为昇腾AI处
- 《盘古大模型——鸿蒙NEXT的智慧引擎》
人工智能深度学习
在当今科技飞速发展的时代,华为HarmonyOSNEXT的发布无疑是操作系统领域的一颗重磅炸弹,其将人工智能与操作系统深度融合,开启了智能新时代。而盘古大模型在其中发挥着至关重要的核心作用。赋予小艺智能助手超强能力在鸿蒙NEXT中,盘古大模型赋予了小艺智能助手更强的记忆、推理和规划能力,使其能够支持23类常用记忆类型,掌握万亿token的知识量。基于盘古大模型,小艺可以实现诸如将带有表格的图片转化
- 《AI 造梦:解锁虚拟场景与角色逼真丰富密码》
人工智能深度学习
在科技飞速发展的当下,生成式人工智能正以前所未有的态势席卷各个领域,尤其在构建虚拟世界方面,展现出令人惊叹的潜力。从沉浸式游戏世界到逼真的影视特效场景,从栩栩如生的虚拟偶像到互动性极强的虚拟角色,生成式人工智能正在改写我们对虚拟场景和角色的认知。今天,就让我们深入探寻如何利用这一前沿技术,创造出更加逼真且丰富的虚拟场景与角色。生成式AI技术基石生成式对抗网络(GANs)和变分自编码器(VAEs)是
- 《鸿蒙微内核与人工智能算法协同,开启智能系统新时代》
人工智能深度学习
在当今科技飞速发展的时代,鸿蒙系统以其独特的微内核架构和对人工智能算法的深度融合,正引领着操作系统智能化的新潮流。本文将深入探讨鸿蒙系统的微内核架构是如何与人工智能算法高效协同,从而提升系统性能和智能化水平的。鸿蒙系统微内核架构的优势鸿蒙系统采用微内核架构,将核心功能模块化,只保留最基本的进程管理、内存管理和通信机制等功能在内核中,而文件系统、网络协议等则作为独立的模块放在用户空间运行。这种架构使
- 《量子AI:突破量子比特稳定性与容错性的关键瓶颈》
人工智能深度学习机器学习
在量子计算的发展进程中,量子比特的稳定性和容错性问题一直是阻碍其走向广泛应用的关键障碍。量子AI作为前沿技术,正积极探索各种途径来攻克这些难题。量子纠错:守护量子比特的精准防线量子纠错是解决量子比特稳定性和容错性问题的核心技术之一。其原理是通过在量子比特之间建立量子纠错码,来检测和纠正量子比特在计算过程中发生的错误。比如谷歌量子人工智能实验室采用的“表面码”技术,通过构建物理量子比特的网格来编码逻
- 项目中 枚举与注解的结合使用
飞翔的马甲
javaenumannotation
前言:版本兼容,一直是迭代开发头疼的事,最近新版本加上了支持新题型,如果新创建一份问卷包含了新题型,那旧版本客户端就不支持,如果新创建的问卷不包含新题型,那么新旧客户端都支持。这里面我们通过给问卷类型枚举增加自定义注解的方式完成。顺便巩固下枚举与注解。
一、枚举
1.在创建枚举类的时候,该类已继承java.lang.Enum类,所以自定义枚举类无法继承别的类,但可以实现接口。
- 【Scala十七】Scala核心十一:下划线_的用法
bit1129
scala
下划线_在Scala中广泛应用,_的基本含义是作为占位符使用。_在使用时是出问题非常多的地方,本文将不断完善_的使用场景以及所表达的含义
1. 在高阶函数中使用
scala> val list = List(-3,8,7,9)
list: List[Int] = List(-3, 8, 7, 9)
scala> list.filter(_ > 7)
r
- web缓存基础:术语、http报头和缓存策略
dalan_123
Web
对于很多人来说,去访问某一个站点,若是该站点能够提供智能化的内容缓存来提高用户体验,那么最终该站点的访问者将络绎不绝。缓存或者对之前的请求临时存储,是http协议实现中最核心的内容分发策略之一。分发路径中的组件均可以缓存内容来加速后续的请求,这是受控于对该内容所声明的缓存策略。接下来将讨web内容缓存策略的基本概念,具体包括如如何选择缓存策略以保证互联网范围内的缓存能够正确处理的您的内容,并谈论下
- crontab 问题
周凡杨
linuxcrontabunix
一: 0481-079 Reached a symbol that is not expected.
背景:
*/5 * * * * /usr/IBMIHS/rsync.sh
- 让tomcat支持2级域名共享session
g21121
session
tomcat默认情况下是不支持2级域名共享session的,所有有些情况下登陆后从主域名跳转到子域名会发生链接session不相同的情况,但是只需修改几处配置就可以了。
打开tomcat下conf下context.xml文件
找到Context标签,修改为如下内容
如果你的域名是www.test.com
<Context sessionCookiePath="/path&q
- web报表工具FineReport常用函数的用法总结(数学和三角函数)
老A不折腾
Webfinereport总结
ABS
ABS(number):返回指定数字的绝对值。绝对值是指没有正负符号的数值。
Number:需要求出绝对值的任意实数。
示例:
ABS(-1.5)等于1.5。
ABS(0)等于0。
ABS(2.5)等于2.5。
ACOS
ACOS(number):返回指定数值的反余弦值。反余弦值为一个角度,返回角度以弧度形式表示。
Number:需要返回角
- linux 启动java进程 sh文件
墙头上一根草
linuxshelljar
#!/bin/bash
#初始化服务器的进程PId变量
user_pid=0;
robot_pid=0;
loadlort_pid=0;
gateway_pid=0;
#########
#检查相关服务器是否启动成功
#说明:
#使用JDK自带的JPS命令及grep命令组合,准确查找pid
#jps 加 l 参数,表示显示java的完整包路径
#使用awk,分割出pid
- 我的spring学习笔记5-如何使用ApplicationContext替换BeanFactory
aijuans
Spring 3 系列
如何使用ApplicationContext替换BeanFactory?
package onlyfun.caterpillar.device;
import org.springframework.beans.factory.BeanFactory;
import org.springframework.beans.factory.xml.XmlBeanFactory;
import
- Linux 内存使用方法详细解析
annan211
linux内存Linux内存解析
来源 http://blog.jobbole.com/45748/
我是一名程序员,那么我在这里以一个程序员的角度来讲解Linux内存的使用。
一提到内存管理,我们头脑中闪出的两个概念,就是虚拟内存,与物理内存。这两个概念主要来自于linux内核的支持。
Linux在内存管理上份为两级,一级是线性区,类似于00c73000-00c88000,对应于虚拟内存,它实际上不占用
- 数据库的单表查询常用命令及使用方法(-)
百合不是茶
oracle函数单表查询
创建数据库;
--建表
create table bloguser(username varchar2(20),userage number(10),usersex char(2));
创建bloguser表,里面有三个字段
&nbs
- 多线程基础知识
bijian1013
java多线程threadjava多线程
一.进程和线程
进程就是一个在内存中独立运行的程序,有自己的地址空间。如正在运行的写字板程序就是一个进程。
“多任务”:指操作系统能同时运行多个进程(程序)。如WINDOWS系统可以同时运行写字板程序、画图程序、WORD、Eclipse等。
线程:是进程内部单一的一个顺序控制流。
线程和进程
a. 每个进程都有独立的
- fastjson简单使用实例
bijian1013
fastjson
一.简介
阿里巴巴fastjson是一个Java语言编写的高性能功能完善的JSON库。它采用一种“假定有序快速匹配”的算法,把JSON Parse的性能提升到极致,是目前Java语言中最快的JSON库;包括“序列化”和“反序列化”两部分,它具备如下特征:  
- 【RPC框架Burlap】Spring集成Burlap
bit1129
spring
Burlap和Hessian同属于codehaus的RPC调用框架,但是Burlap已经几年不更新,所以Spring在4.0里已经将Burlap的支持置为Deprecated,所以在选择RPC框架时,不应该考虑Burlap了。
这篇文章还是记录下Burlap的用法吧,主要是复制粘贴了Hessian与Spring集成一文,【RPC框架Hessian四】Hessian与Spring集成
 
- 【Mahout一】基于Mahout 命令参数含义
bit1129
Mahout
1. mahout seqdirectory
$ mahout seqdirectory
--input (-i) input Path to job input directory(原始文本文件).
--output (-o) output The directory pathna
- linux使用flock文件锁解决脚本重复执行问题
ronin47
linux lock 重复执行
linux的crontab命令,可以定时执行操作,最小周期是每分钟执行一次。关于crontab实现每秒执行可参考我之前的文章《linux crontab 实现每秒执行》现在有个问题,如果设定了任务每分钟执行一次,但有可能一分钟内任务并没有执行完成,这时系统会再执行任务。导致两个相同的任务在执行。
例如:
<?
//
test
.php
- java-74-数组中有一个数字出现的次数超过了数组长度的一半,找出这个数字
bylijinnan
java
public class OcuppyMoreThanHalf {
/**
* Q74 数组中有一个数字出现的次数超过了数组长度的一半,找出这个数字
* two solutions:
* 1.O(n)
* see <beauty of coding>--每次删除两个不同的数字,不改变数组的特性
* 2.O(nlogn)
* 排序。中间
- linux 系统相关命令
candiio
linux
系统参数
cat /proc/cpuinfo cpu相关参数
cat /proc/meminfo 内存相关参数
cat /proc/loadavg 负载情况
性能参数
1)top
M:按内存使用排序
P:按CPU占用排序
1:显示各CPU的使用情况
k:kill进程
o:更多排序规则
回车:刷新数据
2)ulimit
ulimit -a:显示本用户的系统限制参
- [经营与资产]保持独立性和稳定性对于软件开发的重要意义
comsci
软件开发
一个软件的架构从诞生到成熟,中间要经过很多次的修正和改造
如果在这个过程中,外界的其它行业的资本不断的介入这种软件架构的升级过程中
那么软件开发者原有的设计思想和开发路线
- 在CentOS5.5上编译OpenJDK6
Cwind
linuxOpenJDK
几番周折终于在自己的CentOS5.5上编译成功了OpenJDK6,将编译过程和遇到的问题作一简要记录,备查。
0. OpenJDK介绍
OpenJDK是Sun(现Oracle)公司发布的基于GPL许可的Java平台的实现。其优点:
1、它的核心代码与同时期Sun(-> Oracle)的产品版基本上是一样的,血统纯正,不用担心性能问题,也基本上没什么兼容性问题;(代码上最主要的差异是
- java乱码问题
dashuaifu
java乱码问题js中文乱码
swfupload上传文件参数值为中文传递到后台接收中文乱码 在js中用setPostParams({"tag" : encodeURI( document.getElementByIdx_x("filetag").value,"utf-8")});
然后在servlet中String t
- cygwin很多命令显示command not found的解决办法
dcj3sjt126com
cygwin
cygwin很多命令显示command not found的解决办法
修改cygwin.BAT文件如下
@echo off
D:
set CYGWIN=tty notitle glob
set PATH=%PATH%;d:\cygwin\bin;d:\cygwin\sbin;d:\cygwin\usr\bin;d:\cygwin\usr\sbin;d:\cygwin\us
- [介绍]从 Yii 1.1 升级
dcj3sjt126com
PHPyii2
2.0 版框架是完全重写的,在 1.1 和 2.0 两个版本之间存在相当多差异。因此从 1.1 版升级并不像小版本间的跨越那么简单,通过本指南你将会了解两个版本间主要的不同之处。
如果你之前没有用过 Yii 1.1,可以跳过本章,直接从"入门篇"开始读起。
请注意,Yii 2.0 引入了很多本章并没有涉及到的新功能。强烈建议你通读整部权威指南来了解所有新特性。这样有可能会发
- Linux SSH免登录配置总结
eksliang
ssh-keygenLinux SSH免登录认证Linux SSH互信
转载请出自出处:http://eksliang.iteye.com/blog/2187265 一、原理
我们使用ssh-keygen在ServerA上生成私钥跟公钥,将生成的公钥拷贝到远程机器ServerB上后,就可以使用ssh命令无需密码登录到另外一台机器ServerB上。
生成公钥与私钥有两种加密方式,第一种是
- 手势滑动销毁Activity
gundumw100
android
老是效仿ios,做android的真悲催!
有需求:需要手势滑动销毁一个Activity
怎么办尼?自己写?
不用~,网上先问一下百度。
结果:
http://blog.csdn.net/xiaanming/article/details/20934541
首先将你需要的Activity继承SwipeBackActivity,它会在你的布局根目录新增一层SwipeBackLay
- JavaScript变换表格边框颜色
ini
JavaScripthtmlWebhtml5css
效果查看:http://hovertree.com/texiao/js/2.htm代码如下,保存到HTML文件也可以查看效果:
<html>
<head>
<meta charset="utf-8">
<title>表格边框变换颜色代码-何问起</title>
</head>
<body&
- Kafka Rest : Confluent
kane_xie
kafkaRESTconfluent
最近拿到一个kafka rest的需求,但kafka暂时还没有提供rest api(应该是有在开发中,毕竟rest这么火),上网搜了一下,找到一个Confluent Platform,本文简单介绍一下安装。
这里插一句,给大家推荐一个九尾搜索,原名叫谷粉SOSO,不想fanqiang谷歌的可以用这个。以前在外企用谷歌用习惯了,出来之后用度娘搜技术问题,那匹配度简直感人。
环境声明:Ubu
- Calender不是单例
men4661273
单例Calender
在我们使用Calender的时候,使用过Calendar.getInstance()来获取一个日期类的对象,这种方式跟单例的获取方式一样,那么它到底是不是单例呢,如果是单例的话,一个对象修改内容之后,另外一个线程中的数据不久乱套了吗?从试验以及源码中可以得出,Calendar不是单例。
测试:
Calendar c1 =
- 线程内存和主内存之间联系
qifeifei
java thread
1, java多线程共享主内存中变量的时候,一共会经过几个阶段,
lock:将主内存中的变量锁定,为一个线程所独占。
unclock:将lock加的锁定解除,此时其它的线程可以有机会访问此变量。
read:将主内存中的变量值读到工作内存当中。
load:将read读取的值保存到工作内存中的变量副本中。
- schedule和scheduleAtFixedRate
tangqi609567707
javatimerschedule
原文地址:http://blog.csdn.net/weidan1121/article/details/527307
import java.util.Timer;import java.util.TimerTask;import java.util.Date;
/** * @author vincent */public class TimerTest {
 
- erlang 部署
wudixiaotie
erlang
1.如果在启动节点的时候报这个错 :
{"init terminating in do_boot",{'cannot load',elf_format,get_files}}
则需要在reltool.config中加入
{app, hipe, [{incl_cond, exclude}]},
2.当generate时,遇到:
ERROR