同时有COUNT(DISTINCT)和GROUP BY的慢查询sql优化

项目中碰到一个慢查询,里面既有COUNT(DISTINCT),又有GROUP BY,查询性能很差,26万条数据查询下来需要18秒,sql如下

    SELECT
        a.channel_code AS channelCode,
        a.channel_name AS channelName,
        DATE_FORMAT(a.create_date, '%Y') AS orderDate,
        COUNT(DISTINCT a.order_no) AS orderCount,
        COUNT(DISTINCT a.user_id) AS userCount,
        SUM(a.payment) AS totalAmount,
        SUM(a.content_rate_fee) AS rateAmount
    FROM
        user_order a
    WHERE
        a.del_flag = '0'
    AND a.create_date >= '2017'
    AND a.create_date <= '2018'
    GROUP BY
        a.channel_code,
        DATE_FORMAT(a.create_date, '%Y') DESC
    LIMIT 80,20

以上sql运行时间18秒

网上找到的优化方案都是简单的COUNT(DISTINCT),没有GROUP BY子句,然后让优化成GROUP BY的形式。但是上面的例子比较复杂,既有COUNT(DISTINCT)又有GROUP BY,这样就不好优化了。有些人建议后台写个定时任务,查出来存起来,这样虽然可行,但是并不是直接解决方案,还需要额外的存储,不灵活。

分析慢查询发现主要因为group by形成了很多分组,然后COUNT(DISTINCT)对每个分组进行虑重,最后只取分页的那20条,其他都丢弃了,这个很浪费性能

经过探索,发现了如下写法,可以极大的优化性能

    SELECT
        b.channel_code AS channelCode,
        b.channel_name AS channelName,
        DATE_FORMAT(b.create_date, '%Y') AS orderDate,
        COUNT(DISTINCT b.order_no) AS orderCount,
        COUNT(DISTINCT b.user_id) AS userCount,
        SUM(b.payment) AS totalAmount,
        SUM(b.content_rate_fee) AS rateAmount
    FROM
        user_order b
    JOIN (
        SELECT
            a.channel_code AS channelCode,
            DATE_FORMAT(a.create_date, '%Y') AS orderDate
        FROM
            user_order a
        WHERE
            a.del_flag = '0'
        AND a.create_date >= '2017'
        AND a.create_date <= '2018'
        GROUP BY
            a.channel_code,
            DATE_FORMAT(a.create_date, '%Y') DESC
        LIMIT 80,20
    ) aa ON b.channel_code = aa.channelCode
    AND DATE_FORMAT(b.create_date, '%Y') = aa.orderDate
    AND b.del_flag = '0'
    GROUP BY
        b.channel_code,
        DATE_FORMAT(b.create_date, '%Y') DESC

以上sql直行时间3.5秒,比老方案快了将近15秒。

分析新方案,先不进行COUNT(DISTINCT),而是将数据范围先缩小,就是先只取分页需要的那20个数据,然后进行join,这样查出来的分组就很少了,再进行COUNT(DISTINCT),对很少量的分组进行DISTINCT,性能大大的提升了。

 

你可能感兴趣的:(SQL优化)