Common Substrings
\[ Time Limit: 5000 ms\quad Memory Limit: 65536 kB \]
题意
给出两个字符串,要求两个字符串公共子串长度不小于 \(k\) 的对数。
思路
对 \(S\) 串构建后缀自动机,然后利用 \(v \in u'son\),\(dp[u] += dp[v]\) 求出每个节点的 \(endpos\) 大小。
用 \(T\) 串在自动机上跑最长公共连续子串,假设现在在 \(T\) 串上匹配的最长部分是 \(t\),停在自动机上的 \(p\) 节点。为了防止重复计数,我们现在要求就是的 \(t\) 的所有后缀在 \(S\) 上有多少匹配的位置。
这个计算方法就是 \(\sum dp[i]*(LCS-max(k-1,father.len))\)。在 \(p\) 节点时,\(LCS\) 为我们每次更新的答案 \(res\),接下来往 \(p\) 的 \(father\) 更新时,\(LCS\) 就是 \(i.len\)
比如样例中的
\(xx\\ xx\)
第二个串匹配时,第一次匹配到 \(x\)_ 。第二次匹配到 \(xx\),然后我们继续更新 _\(x\) 的答案。
但是如果每次都暴力向上更新,是会超时的,我们发现只有每个刚刚匹配到的 \(p\) 节点的答案与 \(res\) 有关,而 \(p\) 向上更新的节点的贡献都是固定的,所以我们可以先求出全部的 \(p\) 节点的贡献,然后用 \(cnt[i]\) 表示 \(i\) 节点被底下更新了几次,倒着计算,压缩更新次数。
#include