Java(JDK1.8)中HashMap底层原理实现及源码分析

1.实现原理简述

HashMap实际上是一个元素为链表的数组。当添加一个元素时,先计算元素key的hash值,用来确定插入数组中的位置,也存在hash值会相等的情况,则会插入到同一位置,形成链表结构,当链表长度达到一定长度时,链表会转换成红黑树,这样会减少查询时间。其数据结构简单归纳为数组(位桶)+链表+红黑树。

2.与JDK1.6、1.7版本比较

(1)数据结构更佳:JDK1.6、1.7采用位桶+链表,用链表解决碰撞冲突,当存在Hash值相同时,只采取链表储存数据;JDK1.8采用位桶数组+链表+红黑树实现,当链表长度超过阀值(8)时,将链表转换成红黑树。

(2)效率更高:JDK1.6、1.7中,单纯链表查询的时间复杂度为O(n);JDK1.8中,当链表转换为红黑树时,查询的时间复杂度为O(logn)。

3.涉及到的数据结构

(1)数组元素Node 实现了Map.Entry接口

static class Node implements Map.Entry {
        final int hash; 
        final K key;
        V value;
        Node next;

        Node(int hash, K key, V value, Node next) {
            this.hash = hash;
            this.key = key;
            this.value = value;
            this.next = next;
        }

        public final K getKey()        { return key; }
        public final V getValue()      { return value; }
        public final String toString() { return key + "=" + value; }

        public final int hashCode() {
            return Objects.hashCode(key) ^ Objects.hashCode(value);
        }

        public final V setValue(V newValue) {
            V oldValue = value;
            value = newValue;
            return oldValue;
        }

        public final boolean equals(Object o) {
            if (o == this)
                return true;
            if (o instanceof Map.Entry) {
                Map.Entry e = (Map.Entry)o;
                if (Objects.equals(key, e.getKey()) &&
                    Objects.equals(value, e.getValue()))
                    return true;
            }
            return false;
        }
    }

(2)红黑树

static final class TreeNode extends LinkedHashMap.Entry {
        TreeNode parent;  // 父节点
        TreeNode left;    // 左子树
        TreeNode right;   // 右子树
        TreeNode prev;    
        boolean red;  //颜色属性(红黑色)
        TreeNode(int hash, K key, V val, Node next) {
            super(hash, key, val, next);
        }

        /**
         * 返回当前节点的根节点
         */
        final TreeNode root() {
            for (TreeNode r = this, p;;) {
                if ((p = r.parent) == null)
                    return r;
                r = p;
            }
        }

4.数据域

HashMap本身是以时间换空间,所以加权因子不必很大,但也不能太小,否则会导致浪费空间。当数组中的元素为链表,且长度大于等于8,链表会转换为红黑树;当数组中的元素为红黑树,且长度为小于等于6,红黑树会转换为链表。

    static final int DEFAULT_INITIAL_CAPACITY = 1 << 4; // 默认初始化容量

    static final int MAXIMUM_CAPACITY = 1 << 30;   //最大容量

    static final float DEFAULT_LOAD_FACTOR = 0.75f; //默认加权因子

    static final int TREEIFY_THRESHOLD = 8;  //链表转换为红黑树的阀值

    static final int UNTREEIFY_THRESHOLD = 6;  //红黑树转换为链表的阀值

    static final int MIN_TREEIFY_CAPACITY = 64; // 最小转换容量

5.构造函数

构造函数有四种方式,最后一种为构造时就给对象添加健值对。

  public HashMap(int initialCapacity, float loadFactor) {
        if (initialCapacity < 0)
            throw new IllegalArgumentException("Illegal initial capacity: " +
                                               initialCapacity);
        if (initialCapacity > MAXIMUM_CAPACITY)
            initialCapacity = MAXIMUM_CAPACITY;
        if (loadFactor <= 0 || Float.isNaN(loadFactor))
            throw new IllegalArgumentException("Illegal load factor: " +
                                               loadFactor);
        this.loadFactor = loadFactor;
        this.threshold = tableSizeFor(initialCapacity); //新的扩容阀值
    }

    public HashMap(int initialCapacity) {
        this(initialCapacity, DEFAULT_LOAD_FACTOR); //加权因子为默认值
    }

    public HashMap() {
        this.loadFactor = DEFAULT_LOAD_FACTOR; //只设置加权因子为默认值
    }

    public HashMap(Map m) {
        this.loadFactor = DEFAULT_LOAD_FACTOR;
        putMapEntries(m, false);
    }

    final void putMapEntries(Map m, boolean evict) {
        int s = m.size();
        if (s > 0) {
            if (table == null) { // pre-size
                float ft = ((float)s / loadFactor) + 1.0F;
                int t = ((ft < (float)MAXIMUM_CAPACITY) ?
                         (int)ft : MAXIMUM_CAPACITY);
                if (t > threshold)
                    threshold = tableSizeFor(t);
            }
            //当m的size大于新的扩容阀值,需重新扩容
            else if (s > threshold)
                resize();
            for (Map.Entry e : m.entrySet()) {
                K key = e.getKey();
                V value = e.getValue();
                //添加健值对
                putVal(hash(key), key, value, false, evict);
            }
        }
    }

6.存取机制

(1)存机制:put(key, value)

简述添加健值对过程:a.判断健值对数组tab[]是否为空,否则进行扩容。b.根据健值key计算hash值得到插入数组的索引,如果该索引位置值为空,直接新建节点添加。c.判断当前处理hash冲突的是链表还是红黑树,然后分别进行处理。

    public V put(K key, V value) {
        return putVal(hash(key), key, value, false, true);
    }

    
    final V putVal(int hash, K key, V value, boolean onlyIfAbsent,
                   boolean evict) {
        Node[] tab; Node p; int n, i;
        if ((tab = table) == null || (n = tab.length) == 0)
            n = (tab = resize()).length;
        if ((p = tab[i = (n - 1) & hash]) == null)
            //新建节点把值插入到该位置
            tab[i] = newNode(hash, key, value, null);
        //表示存储有冲突:首先通过链表处理,当链表长度为8时转换成红黑树
        else {
            Node e; K k;
            if (p.hash == hash &&
                ((k = p.key) == key || (key != null && key.equals(k))))
                e = p;
            else if (p instanceof TreeNode)
                e = ((TreeNode)p).putTreeVal(this, tab, hash, key, value);
            else {
                for (int binCount = 0; ; ++binCount) {
                    //指针为空,挂在后面
                    if ((e = p.next) == null) {
                        p.next = newNode(hash, key, value, null);
                        //如果冲突的节点数已经达到8个,看是否需要改变冲突节点的存储结                        构,               
            //treeifyBin首先判断当前hashMap的长度,如果不足64,只进行扩容,如果达到64,那么将冲突的存储结构为红黑树 
                        if (binCount >= TREEIFY_THRESHOLD - 1) 
                            treeifyBin(tab, hash);
                        break;
                    }
                    //如果有相同的值就结束遍历
                    if (e.hash == hash &&
                        ((k = e.key) == key || (key != null && key.equals(k))))
                        break;
                    p = e;
                }
            }
            if (e != null) { // existing mapping for key
                V oldValue = e.value;
                if (!onlyIfAbsent || oldValue == null)
                    e.value = value;
                afterNodeAccess(e);
                return oldValue;
            }
        }
        ++modCount;
        //如果当前大小大于门限,门限原本是初始容量*0.75
        if (++size > threshold)
            resize(); //再次扩容
        afterNodeInsertion(evict);
        return null;
    }

(2)取机制:get(Object key)

简述取值过程:a.计算链表数组中的第一个Node。b.判断第一个Node的key值与参数的key值是否相等,不相等就遍历链表找到相等的key值返回对应的value。

     public V get(Object key) {
        Node e;
        return (e = getNode(hash(key), key)) == null ? null : e.value;
    }

    final Node getNode(int hash, Object key) {
        Node[] tab; Node first, e; int n; K k;
        //找到第一个插入的Node
        if ((tab = table) != null && (n = tab.length) > 0 &&
            (first = tab[(n - 1) & hash]) != null) {
            //判断条件为hash值和key值都需要相同
            if (first.hash == hash &&
                ((k = first.key) == key || (key != null && key.equals(k))))
                return first;
            if ((e = first.next) != null) {
                if (first instanceof TreeNode)
                    return ((TreeNode)first).getTreeNode(hash, key);
                //遍历first后面的链表,找到key值和hash值都相同的Node
                do {
                    if (e.hash == hash &&
                        ((k = e.key) == key || (key != null && key.equals(k))))
                        return e;
                } while ((e = e.next) != null);
            }
        }
        return null;
    }

7.扩容机制

在构造hash表时,如果不指明初始大小,默认大小为16,如果Node[]数组中的元素达到重新调整的HashMap的大小,则需要扩容为原来的两部,扩容很好耗时。

final Node[] resize() {
        Node[] oldTab = table;
        int oldCap = (oldTab == null) ? 0 : oldTab.length;
        int oldThr = threshold;
        int newCap, newThr = 0;
        if (oldCap > 0) {
            if (oldCap >= MAXIMUM_CAPACITY) {
                threshold = Integer.MAX_VALUE;
                return oldTab;
            }
            //把新表的长度设置为旧表的两倍
            else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY &&
                     oldCap >= DEFAULT_INITIAL_CAPACITY)
                newThr = oldThr << 1; // double threshold
        }
        else if (oldThr > 0) // initial capacity was placed in threshold
            newCap = oldThr;
        else {               // zero initial threshold signifies using defaults
            newCap = DEFAULT_INITIAL_CAPACITY;
            newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY);
        }
        if (newThr == 0) {
            float ft = (float)newCap * loadFactor;
            newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ?
                      (int)ft : Integer.MAX_VALUE);
        }
        threshold = newThr;
        @SuppressWarnings({"rawtypes","unchecked"})
            //下面开始构造新表,对其进行初始化
            Node[] newTab = (Node[])new Node[newCap];
        table = newTab;
        if (oldTab != null) {
            //遍历原来的旧表
            for (int j = 0; j < oldCap; ++j) {
                Node e;
                if ((e = oldTab[j]) != null) {
                    oldTab[j] = null;
                    if (e.next == null)
                        newTab[e.hash & (newCap - 1)] = e;
                    else if (e instanceof TreeNode)
                        ((TreeNode)e).split(this, newTab, j, oldCap);
                    //如果e后边有链表,到这里表示e后面带着个单链表,需要遍历单链表,将每个结点重
                    else { // preserve order
                        Node loHead = null, loTail = null;
                        Node hiHead = null, hiTail = null;
                        Node next;
                        do {
                            next = e.next;
                            //新表是旧表的两倍容量,实例上就把单链表拆分为两队,  
                   //e.hash&oldCap为偶数一队,e.hash&oldCap为奇数一对 
                            if ((e.hash & oldCap) == 0) {
                                if (loTail == null)
                                    loHead = e;
                                else
                                    loTail.next = e;
                                loTail = e;
                            }
                            else {
                                if (hiTail == null)
                                    hiHead = e;
                                else
                                    hiTail.next = e;
                                hiTail = e;
                            }
                        } while ((e = next) != null);
                        if (loTail != null) { //lo队不为null,放在新表原位置 
                            loTail.next = null;
                            newTab[j] = loHead;
                        }
                        if (hiTail != null) { //hi队不为null,放在新表j+oldCap位置
                            hiTail.next = null;
                            newTab[j + oldCap] = hiHead;
                        }
                    }
                }
            }
        }
        return newTab;
    }

 

你可能感兴趣的:(Java基础)