(A)、图中展示了7种不同分代的收集器:
Serial、ParNew、Parallel Scavenge、Serial Old、Parallel Old、CMS、G1;
(B)、而它们所处区域,则表明其是属于新生代收集器还是老年代收集器:
新生代收集器:Serial、ParNew、Parallel Scavenge;
老年代收集器:Serial Old、Parallel Old、CMS;
整堆收集器:G1;
(C)、两个收集器间有连线,表明它们可以搭配使用:
Serial/Serial Old、Serial/CMS、ParNew/Serial Old、ParNew/CMS、Parallel Scavenge/Serial Old、Parallel Scavenge/Parallel Old、G1;
(D)、其中Serial Old作为CMS出现"Concurrent Mode Failure"失败的后备预案(后面介绍);
Serial(串行)垃圾收集器是最基本、发展历史最悠久的收集器;
JDK1.3.1前是HotSpot新生代收集的唯一选择;
1、特点
针对新生代;
采用复制算法;
单线程收集;
进行垃圾收集时,必须暂停所有工作线程,直到完成;
即会"Stop The World";
Serial/Serial Old组合收集器运行示意图如下:
ParNew垃圾收集器是Serial收集器的多线程版本。
1、特点
除了多线程外,其余的行为、特点和Serial收集器一样;
如Serial收集器可用控制参数、收集算法、Stop The World、内存分配规则、回收策略等;
两个收集器共用了不少代码;
ParNew/Serial Old组合收集器运行示意图如下:
有一些特点与ParNew收集器相似
新生代收集器;
采用复制算法;
多线程收集;
主要特点是:它的关注点与其他收集器不同
CMS等收集器的关注点是尽可能地缩短垃圾收集时用户线程的停顿时间;
而Parallel Scavenge收集器的目标则是达一个可控制的吞吐量(Throughput);
关于吞吐量与收集器关注点说明详见本节后面;
Serial Old是 Serial收集器的老年代版本;
1、特点
针对老年代;
采用"标记-整理"算法(还有压缩,Mark-Sweep-Compact);
单线程收集;
Serial/Serial Old收集器运行示意图如下:
Parallel Old垃圾收集器是Parallel Scavenge收集器的老年代版本;
JDK1.6中才开始提供;
1、特点
针对老年代;
采用"标记-整理"算法;
多线程收集;
Parallel Scavenge/Parallel Old收集器运行示意图如下:
一种以获取最短回收停顿时间为目标的收集器。
特点:基于标记-清除算法实现。并发收集、低停顿。
应用场景:适用于注重服务的响应速度,希望系统停顿时间最短,给用户带来更好的体验等场景下。如web程序、b/s服务。
CMS收集器的运行过程分为下列4步:
初始标记:标记GC Roots能直接到的对象。速度很快但是仍存在Stop The World问题。
并发标记:进行GC Roots Tracing 的过程,找出存活对象且用户线程可并发执行。
重新标记:为了修正并发标记期间因用户程序继续运行而导致标记产生变动的那一部分对象的标记记录。仍然存在Stop The World问题。
并发清除:对标记的对象进行清除回收。
CMS收集器的内存回收过程是与用户线程一起并发执行的。
CMS收集器的工作过程图:
CMS收集器的缺点:
7.G1收集器
一款面向服务端应用的垃圾收集器。
特点如下:
并行与并发:G1能充分利用多CPU、多核环境下的硬件优势,使用多个CPU来缩短Stop-The-World停顿时间。部分收集器原本需要停顿Java线程来执行GC动作,G1收集器仍然可以通过并发的方式让Java程序继续运行。
分代收集:G1能够独自管理整个Java堆,并且采用不同的方式去处理新创建的对象和已经存活了一段时间、熬过多次GC的旧对象以获取更好的收集效果。
空间整合:G1运作期间不会产生空间碎片,收集后能提供规整的可用内存。
可预测的停顿:G1除了追求低停顿外,还能建立可预测的停顿时间模型。能让使用者明确指定在一个长度为M毫秒的时间段内,消耗在垃圾收集上的时间不得超过N毫秒。
G1为什么能建立可预测的停顿时间模型?
因为它有计划的避免在整个Java堆中进行全区域的垃圾收集。G1跟踪各个Region里面的垃圾堆积的大小,在后台维护一个优先列表,每次根据允许的收集时间,优先回收价值最大的Region。这样就保证了在有限的时间内可以获取尽可能高的收集效率。
G1与其他收集器的区别:
其他收集器的工作范围是整个新生代或者老年代、G1收集器的工作范围是整个Java堆。在使用G1收集器时,它将整个Java堆划分为多个大小相等的独立区域(Region)。虽然也保留了新生代、老年代的概念,但新生代和老年代不再是相互隔离的,他们都是一部分Region(不需要连续)的集合。
G1收集器存在的问题:
Region不可能是孤立的,分配在Region中的对象可以与Java堆中的任意对象发生引用关系。在采用可达性分析算法来判断对象是否存活时,得扫描整个Java堆才能保证准确性。其他收集器也存在这种问题(G1更加突出而已)。会导致Minor GC效率下降。
G1收集器是如何解决上述问题的?
采用Remembered Set来避免整堆扫描。G1中每个Region都有一个与之对应的Remembered Set,虚拟机发现程序在对Reference类型进行写操作时,会产生一个Write Barrier暂时中断写操作,检查Reference引用对象是否处于多个Region中(即检查老年代中是否引用了新生代中的对象),如果是,便通过CardTable把相关引用信息记录到被引用对象所属的Region的Remembered Set中。当进行内存回收时,在GC根节点的枚举范围中加入Remembered Set即可保证不对全堆进行扫描也不会有遗漏。
如果不计算维护 Remembered Set 的操作,G1收集器大致可分为如下步骤:
初始标记:仅标记GC Roots能直接到的对象,并且修改TAMS(Next Top at Mark Start)的值,让下一阶段用户程序并发运行时,能在正确可用的Region中创建新对象。(需要线程停顿,但耗时很短。)
并发标记:从GC Roots开始对堆中对象进行可达性分析,找出存活对象。(耗时较长,但可与用户程序并发执行)
最终标记:为了修正在并发标记期间因用户程序执行而导致标记产生变化的那一部分标记记录。且对象的变化记录在线程Remembered Set Logs里面,把Remembered Set Logs里面的数据合并到Remembered Set中。(需要线程停顿,但可并行执行。)
筛选回收:对各个Region的回收价值和成本进行排序,根据用户所期望的GC停顿时间来制定回收计划。(可并发执行)
总结
名称 | 回收区域 | 回收算法 | 特点 |
serial | 新生代 | 复制算法 | 串行回收,STW |
ParNew | 新生代 | 复制算法 | 并行回收,配置CMS |
parallel Scavenge | 新生代 | 复制算法 | 并行回收,注重吞吐量 |
serial old | 老年代 | 标记整理 | 串行回收,STW |
paerallel old | 老年代 | 标记整理 | 并行回收,STW |
CMS | 老年代 | 标记清除 | 并发收集,低停顿 |
G1 | 不分带 | 标记整理 | 分代收集,空间整合 |
CMS和G1的区别
1.CMS针对老年代,G1不分代
2.CMS基于标记清除,存在内存碎片,G1基于标记整理,不存在内存碎片。
3.G1的区域划分和优先级区域回收机制,确保 G1 收集器可以在有限时间获得最高的垃圾收集效率。