C. RMQ with Shifts

C. RMQ with Shifts

1000ms
1000ms
131072KB
 
64-bit integer IO format:  %lld      Java class name:  Main
 
 

In the traditional RMQ (Range Minimum Query) problem, we have a static array A. Then for each query (LR) (L$ \le$R), we report the minimum value among A[L], A[L + 1], ..., A[R]. Note that the indices start from 1, i.e. the left-most element is A[1].

In this problem, the array A is no longer static: we need to support another operation

 

shift( i 1i 2i 3,...,  i k)( i 1 <  i 2 < ... <  i kk > 1)

 

we do a left ``circular shift" of A[i1], A[i2], ..., A[ik].

For example, if A={6, 2, 4, 8, 5, 1, 4}, then shift(2, 4, 5, 7) yields {6, 8, 4, 5, 4, 1, 2}. After that, shift(1, 2) yields 8, 6, 4, 5, 4, 1, 2.

 

Input 

There will be only one test case, beginning with two integers nq ( 1$ \le$n$ \le$100, 000, 1$ \le$q$ \le$250, 000), the number of integers in array A, and the number of operations. The next line contains n positive integers not greater than 100,000, the initial elements in array A. Each of the next q lines contains an operation. Each operation is formatted as a string having no more than 30 characters, with no space characters inside. All operations are guaranteed to be valid.

 


Warning: The dataset is large, better to use faster I/O methods.

 

Output 

For each query, print the minimum value (rather than index) in the requested range.

 

Sample Input 

 

7 5

6 2 4 8 5 1 4

query(3,7)

shift(2,4,5,7)

query(1,4)

shift(1,2)

query(2,2)

 

Sample Output 

 

1

4

6

解题:RMQ问题,更新比较有新意。。。。。。。。。。

C. RMQ with Shifts
 1 #include <iostream>

 2 #include <cstdio>

 3 #include <cstring>

 4 #include <cstdlib>

 5 #include <vector>

 6 #include <climits>

 7 #include <algorithm>

 8 #include <cmath>

 9 #define LL long long

10 using namespace std;

11 const int maxn = 100010;

12 struct node{

13     int lt,rt,minVal;

14 }tree[maxn<<2];

15 int d[maxn],u[30],cnt;

16 void build(int lt,int rt,int v){

17     tree[v].lt = lt;

18     tree[v].rt = rt;

19     if(lt == rt){

20         tree[v].minVal = d[lt];

21         return;

22     }

23     int mid = (lt+rt)>>1;

24     build(lt,mid,v<<1);

25     build(mid+1,rt,v<<1|1);

26     tree[v].minVal = min(tree[v<<1].minVal,tree[v<<1|1].minVal);

27 }

28 int query(int lt,int rt,int v){

29     if(tree[v].lt == lt && tree[v].rt == rt) return tree[v].minVal;

30     int mid = (tree[v].lt+tree[v].rt)>>1;

31     if(rt <= mid) return query(lt,rt,v<<1);

32     else if(lt > mid) return query(lt,rt,v<<1|1);

33     else return min(query(lt,mid,v<<1),query(mid+1,rt,v<<1|1));

34 }

35 void update(int lt,int rt,int v){

36     if(tree[v].lt == tree[v].rt){

37         tree[v].minVal = d[tree[v].lt];

38         return;

39     }

40     int mid = (tree[v].lt+tree[v].rt)>>1;

41     if(u[rt] <= mid) update(lt,rt,v<<1);

42     else if(u[lt] > mid) update(lt,rt,v<<1|1);

43     else{

44         int i;

45         for(i = lt; u[i] <= mid; i++);

46         update(lt,i-1,v<<1);

47         update(i,rt,v<<1|1);

48     }

49     tree[v].minVal = min(tree[v<<1].minVal,tree[v<<1|1].minVal);

50 }

51 int main(){

52     int n,m,i,j,len,temp;

53     char str[100];

54     while(~scanf("%d%d",&n,&m)){

55         for(i = 1; i <= n; i++)

56             scanf("%d",d+i);

57             build(1,n,1);

58         for(i = 0; i < m; i++){

59             scanf("%s",str);

60             len = strlen(str);

61             for(cnt = j = 0; j < len;){

62                 if(str[j] < '0' || str[j] > '9') {j++;continue;}

63                 temp = 0;

64                 while(j < len && str[j] >= '0' && str[j] <= '9') {temp = temp*10 + (str[j]-'0');j++;}

65                 u[cnt++] = temp;

66             }

67             if(str[0] == 'q'){

68                 printf("%d\n",query(u[0],u[1],1));

69             }else{

70                 temp = d[u[0]];

71                 for(cnt--,j = 0; j < cnt; j++)

72                     d[u[j]] = d[u[j+1]];

73                 d[u[j]]  = temp;

74                 update(0,cnt,1);

75             }

76         }

77     }

78     return 0;

79 }
View Code

 

你可能感兴趣的:(with)