Python非单向递归函数如何返回全部结果?这个经典的背包问题给出了答案

递归( recursion)是一种神奇的编程技巧,可以大幅简化代码,使之看起来更加简洁。然而递归设计却非常抽象,不容易掌握。通常,我们都是自上而下的思考问题, 递归则是自下而上的解决问题——这就是递归看起来不够直观的原因。

和递归相关的概念里,线性递归/非线性递归、单向递归/非单向递归,是非常重要的,要想掌握递归技术,就必须要深入理解。关于递归的基本概念,有兴趣的读者,可以参考我的博客《Python 递归算法指归》。今天,仅就背包问题谈非单向递归函数如何返回全部结果。

背包问题的背后,是世界七大数学难题之一,多项式复杂程度的非确定性问题。作为程序员,可以将该问题大致上理解为组合优化的问题。背包问题通常被这样描述:给定一组物品,每种物品都有自己的重量和价格,在限定的总重量内,如何选择,才能使得物品的总价格最高。如果加上不同的限制和条件,背包问题可以衍生出很多变种。比如,下面这道题看起来和背包问题相去甚远,实质上仍然是一个典型的背包问题。

在一款英雄对战游戏中,玩家拥有m件装备和n位英雄,他可以给每一位英雄分配0件或多件装备,而不同的英雄拥有不同数目的装备时将获得不同的攻击力。玩家如何分配这m件装备,可以使得n个英雄获得的攻击力的和最大?以玩家拥有5件装备和3位英雄为例,下表共有3行6列,对应着3位英雄分别拥有从0到5件装备时的攻击力。

0件 1件 2件 3件 4件 5件
英雄1 0 1 3 5 7 9
英雄2 0 1 1 3 3 7
英雄3 0 3 4 5 6 7

即使不熟悉背包问题,也不难找到解题思路:

  1. 找出所有可能的装备分配方案
  2. 计算每一个方案的攻击值
  3. 选择攻击值最大的分配方案

1. 找出所有可能的装备分配方案

找出将m件装备分配给n位英雄的所有方案是解决问题的核心。这里,循环嵌套是行不通的,因为嵌套层数是输入变量。递归是我想到的可行的方法。

>>> def bag(m, n, series=list()):
        if n == 1:
            for i in range(m+1):
                print(series+[i])
        else:
            for i in range(m+1):
                bag(m-i, n-1, series+[i])
			
>>> bag(3,2) # 将3件装备分配给2位英雄的全部方案
[0, 0]
[0, 1]
[0, 2]
[0, 3]
[1, 0]
[1, 1]
[1, 2]
[2, 0]
[2, 1]
[3, 0]

递归函数bag,打印出了将3件装备分配给2位英雄的全部方案。显然,这不是一个单向递归,因为在同一级有多次递归调用,这意味着递归过程有多次从递归出口走出。对于非单向递归,是不能使用return返回结果的。那么,如何让递归函数返回全部方案呢?请看下面的例子。

>>> def bag(m, n, result, series=list()):
	if n == 1:
		for i in range(m+1):
			result.append(series+[i])
			#print(result[-1])
	else:
		for i in range(m+1):
			bag(m-i, n-1, result, series+[i])

			
>>> result = list()
>>> bag(5, 3, result) # 将5件装备分配给3位英雄,共有56种分配方案
>>> len(result)
56
>>> result
[[0, 0, 0], [0, 0, 1], [0, 0, 2], [0, 0, 3], [0, 0, 4], [0, 0, 5], 
[0, 1, 0], [0, 1, 1], [0, 1, 2], [0, 1, 3], [0, 1, 4], [0, 2, 0], 
[0, 2, 1], [0, 2, 2], [0, 2, 3], [0, 3, 0], [0, 3, 1], [0, 3, 2], 
[0, 4, 0], [0, 4, 1], [0, 5, 0], [1, 0, 0], [1, 0, 1], [1, 0, 2], 
[1, 0, 3], [1, 0, 4], [1, 1, 0], [1, 1, 1], [1, 1, 2], [1, 1, 3], 
[1, 2, 0], [1, 2, 1], [1, 2, 2], [1, 3, 0], [1, 3, 1], [1, 4, 0], 
[2, 0, 0], [2, 0, 1], [2, 0, 2], [2, 0, 3], [2, 1, 0], [2, 1, 1], 
[2, 1, 2], [2, 2, 0], [2, 2, 1], [2, 3, 0], [3, 0, 0], [3, 0, 1], 
[3, 0, 2], [3, 1, 0], [3, 1, 1], [3, 2, 0], [4, 0, 0], [4, 0, 1], 
[4, 1, 0], [5, 0, 0]]

上面的代码中,在调用递归函数之前,先创建一个全局的列表对象result,并作为参数传递给递归函数。递归调用结束后,全部的装备分配方案就保存在列表对象result中。

2. 计算每一个方案的攻击值

遍历56种分配方案,计算每一种方案的攻击力之和,保存到一个新的列表v中。p为3位英雄分别拥有从0到5件装备时的攻击力。

>>> p = [
	[0,1,3,5,7,9],
	[0,1,1,3,3,7],
	[0,3,4,5,6,7]
]
>>> v = list()
>>> for item in result:
        v.append(p[0][item[0]] + p[1][item[1]] + p[2][item[2]])
	
>>> v
[0, 3, 4, 5, 6, 7, 1, 4, 5, 6, 7, 1, 4, 5, 6, 3, 6, 7, 3,
 6, 7, 1, 4, 5, 6, 7, 2, 5, 6, 7, 2, 5, 6, 4, 7, 4, 3, 6, 
 7, 8, 4, 7, 8, 4, 7, 6, 5, 8, 9, 6, 9, 6, 7, 10, 8, 9]

3. 选择攻击值最大的分配方案

找出v列表最大值的序号,进而得到攻击力最大的装备分配方案。

>>> max(v)
10
>>> result[v.index(max(v))]  
[4, 0, 1]

最佳分配方案是第1位英雄持有4件装备,第2位英雄没有装备,第3位英雄持有1件装备,此时3位英雄的攻击力之和为最大,其值为10。

你可能感兴趣的:(python论道,python,递归,背包问题)