一文秒杀三道区间集合题目

读完本文,你不仅学会了算法套路,还可以顺便去 LeetCode 上拿下如下题目:

1288.删除被覆盖区间

56.区间合并

986.区间列表的交集

-----------

经常有读者问区间相关的问题,今天写一篇文章,秒杀三道区间相关的问题。

所谓区间问题,就是线段问题,让你合并所有线段、找出线段的交集等等。主要有两个技巧:

1、排序。常见的排序方法就是按照区间起点排序,或者先按照起点升序排序,若起点相同,则按照终点降序排序。当然,如果你非要按照终点排序,无非对称操作,本质都是一样的。

2、画图。就是说不要偷懒,勤动手,两个区间的相对位置到底有几种可能,不同的相对位置我们的代码应该怎么去处理。

废话不多说,下面我们来做题。

区间覆盖问题

这是力扣第 1288 题,看下题目:

一文秒杀三道区间集合题目_第1张图片

题目问我们,去除被覆盖区间之后,还剩下多少区间,那么我们可以先算一算,被覆盖区间有多少个,然后和总数相减就是剩余区间数

对于这种区间问题,如果没啥头绪,首先排个序看看,比如我们按照区间的起点进行升序排序:

排序之后,两个相邻区间可能有如下三种相对位置:

一文秒杀三道区间集合题目_第2张图片

对于这三种情况,我们应该这样处理:

对于情况一,找到了覆盖区间。

对于情况二,两个区间可以合并,成一个大区间。

对于情况三,两个区间完全不相交。

依据几种情况,我们可以写出如下代码:

int removeCoveredIntervals(int[][] intvs) {
    // 按照起点升序排列,起点相同时降序排列
    Arrays.sort(intvs, (a, b) -> {
        if (a[0] == b[0]) {
            return b[1] - a[1];
        }
        return a[0] - b[0]; 
    });

    // 记录合并区间的起点和终点
    int left = intvs[0][0];
    int right = intvs[0][1];
    
    int res = 0;
    for (int i = 1; i < intvs.length; i++) {
        int[] intv = intvs[i];
        // 情况一,找到覆盖区间
        if (left <= intv[0] && right >= intv[1]) {
            res++;
        }
        // 情况二,找到相交区间,合并
        if (right >= intv[0] && right <= intv[1]) {
            right = intv[1];
        }
        // 情况三,完全不相交,更新起点和终点
        if (right < intv[0]) {
            left = intv[0];
            right = intv[1];
        }
    }
    
    return intvs.length - res;
}

以上就是本题的解法代码,起点升序排列,终点降序排列的目的是防止如下情况:

一文秒杀三道区间集合题目_第3张图片

对于这两个起点相同的区间,我们需要保证长的那个区间在上面(按照终点降序),这样才会被判定为覆盖,否则会被错误地判定为相交,少算一个覆盖区间。

区间合并问题

力扣第 56 题就是一道相关问题,题目很好理解:

title

我们解决区间问题的一般思路是先排序,然后观察规律。

一个区间可以表示为 [start, end],前文聊的区间调度问题,需要按 end 排序,以便满足贪心选择性质。而对于区间合并问题,其实按 endstart 排序都可以,不过为了清晰起见,我们选择按 start 排序。

显然,对于几个相交区间合并后的结果区间 xx.start 一定是这些相交区间中 start 最小的,x.end 一定是这些相交区间中 end 最大的。

由于已经排了序,x.start 很好确定,求 x.end 也很容易,可以类比在数组中找最大值的过程:

int max_ele = arr[0];
for (int i = 1; i < arr.length; i++) 
    max_ele = max(max_ele, arr[i]);
return max_ele;

然后就可以写出完整代码

# intervals 形如 [[1,3],[2,6]...]
def merge(intervals):
    if not intervals: return []
    # 按区间的 start 升序排列
    intervals.sort(key=lambda intv: intv[0])
    res = []
    res.append(intervals[0])
    
    for i in range(1, len(intervals)):
        curr = intervals[i]
        # res 中最后一个元素的引用
        last = res[-1]
        if curr[0] <= last[1]:
            # 找到最大的 end
            last[1] = max(last[1], curr[1])
        else:
            # 处理下一个待合并区间
            res.append(curr)
    return res

区间交集问题

先看下题目,力扣第 986 题就是这个问题:

title

题目很好理解,就是让你找交集,注意区间都是闭区间。

解决区间问题的思路一般是先排序,以便操作,不过题目说已经排好序了,那么可以用两个索引指针在 AB 中游走,把交集找出来,代码大概是这样的:

# A, B 形如 [[0,2],[5,10]...]
def intervalIntersection(A, B):
    i, j = 0, 0
    res = []
    while i < len(A) and j < len(B):
        # ...
        j += 1
        i += 1
    return res

不难,我们先老老实实分析一下各种情况。

首先,对于两个区间,我们用 [a1,a2][b1,b2] 表示在 AB 中的两个区间,那么什么情况下这两个区间没有交集呢:

只有这两种情况,写成代码的条件判断就是这样:

if b2 < a1 or a2 < b1:
    [a1,a2] 和 [b1,b2] 无交集

那么,什么情况下,两个区间存在交集呢?根据命题的否定,上面逻辑的否命题就是存在交集的条件:

# 不等号取反,or 也要变成 and
if b2 >= a1 and a2 >= b1:
    [a1,a2] 和 [b1,b2] 存在交集

接下来,两个区间存在交集的情况有哪些呢?穷举出来:

这很简单吧,就这四种情况而已。那么接下来思考,这几种情况下,交集是否有什么共同点呢?

我们惊奇地发现,交集区间是有规律的!如果交集区间是 [c1,c2],那么 c1=max(a1,b1)c2=min(a2,b2)!这一点就是寻找交集的核心,我们把代码更进一步:

while i < len(A) and j < len(B):
    a1, a2 = A[i][0], A[i][1]
    b1, b2 = B[j][0], B[j][1]
    if b2 >= a1 and a2 >= b1:
        res.append([max(a1, b1), min(a2, b2)])
    # ...

最后一步,我们的指针 ij 肯定要前进(递增)的,什么时候应该前进呢?

结合动画示例就很好理解了,是否前进,只取决于 a2b2 的大小关系:

while i < len(A) and j < len(B):
    # ...
    if b2 < a2:
        j += 1
    else:
        i += 1

以此思路写出代码:

# A, B 形如 [[0,2],[5,10]...]
def intervalIntersection(A, B):
    i, j = 0, 0 # 双指针
    res = []
    while i < len(A) and j < len(B):
        a1, a2 = A[i][0], A[i][1]
        b1, b2 = B[j][0], B[j][1]
        # 两个区间存在交集
        if b2 >= a1 and a2 >= b1:
            # 计算出交集,加入 res
            res.append([max(a1, b1), min(a2, b2)])
        # 指针前进
        if b2 < a2: j += 1
        else:       i += 1
    return res

总结一下,区间类问题看起来都比较复杂,情况很多难以处理,但实际上通过观察各种不同情况之间的共性可以发现规律,用简洁的代码就能处理。

你可能感兴趣的:(算法)