Python入门(下)

文章目录

  • task3 Python入门
    • 函数
      • 1.函数的定义
      • 2.函数的调用
      • 3.函数文档
      • 4.函数参数
      • 5.函数的返回值
      • 6.变量作用域
    • Lambda表达式
      • 1.匿名函数的定义
      • 2.匿名函数的应用
    • 类与对象
      • 1.对象=属性+方法
      • 2.self是什么?
      • 3.Python的魔法方法
      • 4.公有和私有
      • 5.继承
      • 6.组合
      • 7.类、类对象和实例对象
      • 8.什么是绑定?
      • 9.一些相关的内置函数(BIF)
    • 魔法方法
      • 1基本的魔法方法
      • 2.算术运算符
      • 3.反算数运算符
      • 4.增量赋值运算符
      • 5.一元运算符
      • 6.属性访问
      • 7.描述符
      • 8.定制序列
      • 9.迭代器
      • 10.生成器

task3 Python入门

函数

1.函数的定义

还记得 Python 里面“万物皆对象”么?Python 把函数也当成对象,可以从另一个函数中返回出来而去构建高阶函数,比如:参数是函数、返回值是函数。
我们首先来介绍函数的定义。

  • 函数以def关键词开头,后接函数名和圆括号()。
  • 函数执行的代码以冒号起始,并且缩进。
  • return [表达式] 结束函数,选择性地返回一个值给调用方。不带表达式的return相当于返回None。

def functionname (parameters):

       “函数_文档字符串”

        function_suite

        return [expression]

2.函数的调用

例子:

def printme(str):
    print(str)
    
printme("我要调用用户自定义函数!")  # 我要调用用户自定义函数!
printme("再次调用同一函数")  # 再次调用同一函数
temp = printme('hello') # hello
print(temp)  # None

3.函数文档

def MyFirstFunction(name):
    "函数定义过程中name是形参"
    # 因为Ta只是一个形式,表示占据一个参数位置
    print('传递进来的{0}叫做实参,因为Ta是具体的参数值!'.format(name))
    
MyFirstFunction('老马的程序人生')  
# 传递进来的老马的程序人生叫做实参,因为Ta是具体的参数值!

print(MyFirstFunction.__doc__)  
# 函数定义过程中name是形参
help(MyFirstFunction)
# Help on function MyFirstFunction in module __main__:
# MyFirstFunction(name)
#    函数定义过程中name是形参

4.函数参数

Python 的函数具有非常灵活多样的参数形态,既可以实现简单的调用,又可以传入非常复杂的参数。从简到繁的参数形态如下:

  • 位置参数 (positional argument)
  • 默认参数 (default argument)
  • 可变参数 (variable argument)
  • 关键字参数 (keyword argument)
  • 命名关键字参数 (name keyword argument)
  • 参数组合

1.位置参数

def functionname(arg1):

       “函数_文档字符串”

       function_suite

       return [expression]

  • arg1 - 位置参数 ,这些参数在调用函数 (call function) 时位置要固定。

2.默认参数

def functionname(arg1, arg2=v):

       “函数_文档字符串”

       function_suite

       return [expression]

  • arg2 = v - 默认参数 = 默认值,调用函数时,默认参数的值如果没有传入,则被认为是默认值。
  • 默认参数一定要放在位置参数 后面,不然程序会报错。

例子:

def printinfo(name, age=8):
    print('Name:{0},Age:{1}'.format(name, age))
    
printinfo('小马')  # Name:小马,Age:8
printinfo('小马', 10)  # Name:小马,Age:10
  • Python 允许函数调用时参数的顺序与声明时不一致,因为 Python 解释器能够用参数名匹配参数值。

3. 可变参数
顾名思义,可变参数就是传入的参数个数是可变的,可以是 0, 1, 2 到任意个,是不定长的参数。

def functionname(arg1, arg2=v, *args):

       “函数_文档字符串”

       function_suite

       return [expression]

  • *args - 可变参数,可以是从零个到任意个,自动组装成元组。
  • 加了星号(*)的变量名会存放所有未命名的变量参数。

例子:

def printinfo(arg1, *args):
    print(arg1)
    for var in args:
        print(var)
printinfo(10)  # 10
printinfo(70, 60, 50)
# 70
# 60
# 50

4. 关键字参数

def functionname(arg1, arg2=v, *args, **kw):

       “函数_文档字符串”

       function_suite

       return [expression]

  • **kw - 关键字参数,可以是从零个到任意个,自动组装成字典。

例子:

def printinfo(arg1, *args, **kwargs):
    print(arg1)
    print(args)
    print(kwargs)
printinfo(70, 60, 50)
# 70
# (60, 50)
# {}
printinfo(70, 60, 50, a=1, b=2)
# 70
# (60, 50)
# {'a': 1, 'b': 2}

「可变参数」和「关键字参数」的同异总结如下:

可变参数允许传入零个到任意个参数,它们在函数调用时自动组装为一个元组 (tuple)。
关键字参数允许传入零个到任意个参数,它们在函数内部自动组装为一个字典 (dict)。

5. 命名关键字参数

def functionname(arg1, arg2=v, *args, *, nkw, **kw):

       “函数_文档字符串”

       function_suite

       return [expression]

  • *, nkw - 命名关键字参数,用户想要输入的关键字参数,定义方式是在nkw 前面加个分隔符 *
  • 如果要限制关键字参数的名字,就可以用「命名关键字参数」
  • 使用命名关键字参数时,要特别注意不能缺少参数名。

例子:

def printinfo(arg1, *, nkw, **kwargs):
    print(arg1)
    print(nkw)
    print(kwargs)
printinfo(70, nkw=10, a=1, b=2)
# 70
# 10
# {'a': 1, 'b': 2}
printinfo(70, 10, a=1, b=2)
# TypeError: printinfo() takes 1 positional argument but 2 were given
  • 没有写参数名nwk,因此 10 被当成「位置参数」,而原函数只有 1 个位置函数,现在调用了 2 个,因此程序会报错。

6. 参数组合
在 Python 中定义函数,可以用位置参数、默认参数、可变参数、命名关键字参数和关键字参数,这 5 种参数中的 4 个都可以一起使用,但是注意,参数定义的顺序必须是:

  • 位置参数、默认参数、可变参数和关键字参数。
  • 位置参数、默认参数、命名关键字参数和关键字参数。

要注意定义可变参数和关键字参数的语法:

  • *args 是可变参数,args 接收的是一个 tuple
  • **kw 是关键字参数,kw 接收的是一个 dict

命名关键字参数是为了限制调用者可以传入的参数名,同时可以提供默认值。定义命名关键字参数不要忘了写分隔符 *,否则定义的是位置参数。

警告:虽然可以组合多达 5 种参数,但不要同时使用太多的组合,否则函数很难懂。

5.函数的返回值

例子:

def back():
    return [1, '小马的程序人生', 3.14]
print(back())  # [1, '小马的程序人生', 3.14]

6.变量作用域

  • Python 中,程序的变量并不是在哪个位置都可以访问的,访问权限决定于这个变量是在哪里赋值的。
  • 定义在函数内部的变量拥有局部作用域,该变量称为局部变量。
  • 定义在函数外部的变量拥有全局作用域,该变量称为全局变量。
  • 局部变量只能在其被声明的函数内部访问,而全局变量可以在整个程序范围内访问。
  • 当内部作用域想修改外部作用域的变量时,就要用到global和nonlocal关键字了。

例子:

num = 1

def fun1():
    global num  # 需要使用 global 关键字声明
    print(num)  # 1
    num = 123
    print(num)  # 123
    
fun1()
print(num)  # 123

闭包

  • 是函数式编程的一个重要的语法结构,是一种特殊的内嵌函数。
  • 如果在一个内部函数里对外层非全局作用域的变量进行引用,那么内部函数就被认为是闭包。
  • 通过闭包可以访问外层非全局作用域的变量,这个作用域称为 闭包作用域。

例子:

def funX(x):
    def funY(y):
        return x * y
    return funY
i = funX(8)
print(type(i))  # 
print(i(5))  # 40
  • 如果要修改闭包作用域中的变量则需要 nonlocal 关键字。
  • 如果一个函数在内部调用自身本身,这个函数就是递归函数。

例子:

# 利用循环
n = 5
for k in range(1, 5):
    n = n * k
print(n)  # 120
# 利用递归
def factorial(n):
    if n == 1:
        return 1
    return n * factorial(n - 1)
print(factorial(5)) # 120

Lambda表达式

1.匿名函数的定义

在Python里由两类函数:

  • 第一类:用 def 关键词定义的正规函数
  • 第二类:用 lambda 关键词定义的匿名函数

Python 使用 lambda 关键词来创建匿名函数,而非def关键词,它没有函数名,其语法结构如下:

lambda argument_list: expression

  • lambda - 定义匿名函数的关键词。
  • argument_list - 函数参数,它们可以是位置参数、默认参数、关键字参数,和正规函数里的参数类型一样。
  • :- 冒号,在函数参数和表达式中间要加个冒号。
  • expression - 只是一个表达式,输入函数参数,输出一些值。

注意:

  • expression 中没有 return 语句,因为 lambda 不需要它来返回,表达式本身结果就是返回值。
  • 匿名函数拥有自己的命名空间,且不能访问自己参数列表之外或全局命名空间里的参数。

例子:

def sqr(x):
    return x ** 2
    
y = [sqr(x) for x in range(10)]
print(y)
# [0, 1, 4, 9, 16, 25, 36, 49, 64, 81]

lbd_sqr = lambda x: x ** 2
print(lbd_sqr)
#  at 0x000000BABB6AC1E0>

y = [lbd_sqr(x) for x in range(10)]
print(y)
# [0, 1, 4, 9, 16, 25, 36, 49, 64, 81]

sumary = lambda arg1, arg2: arg1 + arg2
print(sumary(10, 20))  # 30

2.匿名函数的应用

函数式编程 是指代码中每一块都是不可变的,都由纯函数的形式组成。这里的纯函数,是指函数本身相互独立、互不影响,对于相同的输入,总会有相同的输出,没有任何副作用。

例子(非函数式编程)

def f(x):
    for i in range(0, len(x)):
        x[i] += 10
    return x
x = [1, 2, 3]
f(x)
print(x)
# [11, 12, 13]

例子(函数式编程)

def f(x):
    y = []
    for item in x:
        y.append(item + 10)
    return y
x = [1, 2, 3]
f(x)
print(x)
# [1, 2, 3]

匿名函数 常常应用于函数式编程的高阶函数 (high-order function)中,主要有两种形式:

  • 参数是函数 (filter, map)
  • 返回值是函数 (closure)

如,在 filtermap函数中的应用:

  • filter(function, iterable) 过滤序列,过滤掉不符合条件的元素,返回一个迭代器对象,如果要转换为列表,可以使用 list() 来转换。

例子:

odd = lambda x: x % 2 == 1
templist = filter(odd, [1, 2, 3, 4, 5, 6, 7, 8, 9])
print(list(templist))  # [1, 3, 5, 7, 9]
  • map(function, *iterables) 根据提供的函数对指定序列做映射。

例子:

m1 = map(lambda x: x ** 2, [1, 2, 3, 4, 5])
print(list(m1))  
# [1, 4, 9, 16, 25]

m2 = map(lambda x, y: x + y, [1, 3, 5, 7, 9], [2, 4, 6, 8, 10])
print(list(m2))  
# [3, 7, 11, 15, 19]

除了 Python 这些内置函数,我们也可以自己定义高阶函数。

类与对象

1.对象=属性+方法

对象是类的实例,换句话说,类主要定义对象的结构,然后我们以类为模板创建对象,类不但包含方法定义,而且还包含所以实例共享的数据。

  • 封装:信息隐蔽技术

我们可以使用关键字 class 定义 Python 类,关键字后面紧跟类的名称、分号和类的实现。
例子:

class Turtle:  # Python中的类名约定以大写字母开头
    """关于类的一个简单例子"""
    # 属性
    color = 'green'
    weight = 10
    legs = 4
    shell = True
    mouth = '大嘴'
    
    # 方法
    def climb(self):
        print('我正在很努力的向前爬...')
    def run(self):
        print('我正在飞快的向前跑...')
    def bite(self):
        print('咬死你咬死你!!')
     def eat(self):
        print('有得吃,真满足...')
     def sleep(self):
        print('困了,睡了,晚安,zzz')
        
tt = Turtle()
print(tt)
# <__main__.Turtle object at 0x0000007C32D67F98>
print(type(tt))
# 
print(tt.__class__)
# 
print(tt.__class__.__name__)
# Turtle
tt.climb()
# 我正在很努力的向前爬...
tt.run()
# 我正在飞快的向前跑...
tt.bite()
# 咬死你咬死你!!
# Python类也是对象。它们是type的实例
print(type(Turtle))
# 
  • 继承:子类自动共享父类之间数据和方法的机制

例子:

class MyList(list):
    pass
lst = MyList([1, 5, 2, 7, 8])
lst.append(9)
lst.sort()
print(lst)
# [1, 2, 5, 7, 8, 9]
  • 多态:不同对象对同一方法响应不同的行动

例子:

class Animal:
    def run(self):
        raise AttributeError('子类必须实现这个方法')
class People(Animal):
    def run(self):
        print('人正在走')
class Pig(Animal):
    def run(self):
        print('pig is walking')
class Dog(Animal):
    def run(self):
        print('dog is running')
def func(animal):
    animal.run()
func(Pig())
# pig is walking

2.self是什么?

Python 的 self 相当于 C++ 的 this 指针。
例子:

class Test:
    def prt(self):
        print(self)
        print(self.__class__)
        
t = Test()
t.prt()
# <__main__.Test object at 0x000000BC5A351208>
# 

类的方法与普通的函数只有一个特别的区别 —— 它们必须有一个额外的第一个参数名称(对应于该实例,即该对象本身),按照惯例它的名称是 self。在调用方法时,我们无需明确提供与参数 self 相对应的参数。
例子:

class Ball:
    def setName(self, name):
        self.name = name
    def kick(self):
        print("我叫%s,该死的,谁踢我..." % self.name)
        
a = Ball()
a.setName("球A")
b = Ball()
b.setName("球B")
c = Ball()
c.setName("球C")
a.kick()
# 我叫球A,该死的,谁踢我...
b.kick()
# 我叫球B,该死的,谁踢我...

3.Python的魔法方法

据说,Python 的对象天生拥有一些神奇的方法,它们是面向对象的 Python 的一切…

它们是可以给你的类增加魔力的特殊方法…

如果你的对象实现了这些方法中的某一个,那么这个方法就会在特殊的情况下被 Python 所调用,而这一切都是自动发生的…

类有一个名为__init__(self[, param1, param2...])的魔法方法,该方法在类实例化时会自动调用。

例子:

class Ball:
    def __init__(self, name):
        self.name = name
    def kick(self):
        print("我叫%s,该死的,谁踢我..." % self.name)
        
a = Ball("球A")
b = Ball("球B")
c = Ball("球C")
a.kick()
# 我叫球A,该死的,谁踢我...
b.kick()
# 我叫球B,该死的,谁踢我...

4.公有和私有

在 Python 中定义私有变量只需要在变量名或函数名前加上“__”两个下划线,那么这个函数或变量就会为私有的了。

例子(类的私有属性实例)

class JustCounter:
    __secretCount = 0  # 私有变量
    publicCount = 0  # 公开变量
    def count(self):
        self.__secretCount += 1
        self.publicCount += 1
        print(self.__secretCount)
        
counter = JustCounter()
counter.count()  # 1
counter.count()  # 2
print(counter.publicCount)  # 2

# Python的私有为伪私有
print(counter._JustCounter__secretCount)  # 2 
print(counter.__secretCount)  
# AttributeError: 'JustCounter' object has no attribute '__secretCount'

例子(类的私有方法实例)

class Site:
    def __init__(self, name, url):
        self.name = name  # public
        self.__url = url  # private
     def who(self):
        print('name  : ', self.name)
        print('url : ', self.__url)
     def __foo(self):  # 私有方法
        print('这是私有方法')
     def foo(self):  # 公共方法
        print('这是公共方法')
        self.__foo()

x = Site('老马的程序人生', 'https://blog.csdn.net/LSGO_MYP')
x.who()
# name  :  老马的程序人生
# url :  https://blog.csdn.net/LSGO_MYP

x.foo()
# 这是公共方法
# 这是私有方法

x.__foo()
# AttributeError: 'Site' object has no attribute '__foo'

5.继承

Python 同样支持类的继承,派生类的定义如下所示:

class DerivedClassName(BaseClassName):

       statement-1

              .

              .

              .

       statement-N

BaseClassName(基类名)必须与派生类定义在一个作用域内。除了类,还可以用表达式,基类定义在另一个模块中时这一点非常有用:

class DerivedClassName(modname.BaseClassName):

       statement-1

              .

              .

              .

       statement-N

例子(如果子类中定义与父类同名的方法或属性,则会自动覆盖父类对应的方法或属性。)

# 类定义
class people:
    # 定义基本属性
    name = ''
    age = 0
    # 定义私有属性,私有属性在类外部无法直接进行访问
    __weight = 0
    
    # 定义构造方法
    def __init__(self, n, a, w):
        self.name = n
        self.age = a
        self.__weight = w
        
    def speak(self):
        print("%s 说: 我 %d 岁。" % (self.name, self.age))

# 单继承示例
class student(people):
    grade = ''
    
    def __init__(self, n, a, w, g):
        # 调用父类的构函
        people.__init__(self, n, a, w)
        self.grade = g
        
     # 覆写父类的方法
    def speak(self):
        print("%s 说: 我 %d 岁了,我在读 %d 年级" % (self.name, self.age, self.grade))
        
s = student('小马的程序人生', 10, 60, 3)
s.speak()
# 小马的程序人生 说: 我 10 岁了,我在读 3 年级

注意:如果上面的程序去掉:people.__init__(self, n, a, w),则输出:说: 我 0 岁了,我在读 3 年级,因为子类的构造方法把父类的构造方法覆盖了。

例子:

import random
class Fish:
    def __init__(self):
        self.x = random.randint(0, 10)
        self.y = random.randint(0, 10)
    def move(self):
        self.x -= 1
        print("我的位置", self.x, self.y)
        
class GoldFish(Fish):  # 金鱼
    pass
class Carp(Fish):  # 鲤鱼
    pass
class Salmon(Fish):  # 三文鱼
    pass
class Shark(Fish):  # 鲨鱼
    def __init__(self):
        self.hungry = True
        
     def eat(self):
        if self.hungry:
            print("吃货的梦想就是天天有得吃!")
            self.hungry = False
        else:
            print("太撑了,吃不下了!")
            self.hungry = True
            
g = GoldFish()
g.move()  # 我的位置 9 4
s = Shark()
s.eat() # 吃货的梦想就是天天有得吃!
s.move()  
# AttributeError: 'Shark' object has no attribute 'x'

解决该问题可用以下两种方法:

  • 调用未绑定的父类方法Fish.__init__(self)
class Shark(Fish):  # 鲨鱼
    def __init__(self):
        Fish.__init__(self)
        self.hungry = True
     def eat(self):
        if self.hungry:
            print("吃货的梦想就是天天有得吃!")
            self.hungry = False
        else:
            print("太撑了,吃不下了!")
            self.hungry = True
  • 使用super函数super().__init__()
class Shark(Fish):  # 鲨鱼
    def __init__(self):
        super().__init__()
        self.hungry = True
    def eat(self):
        if self.hungry:
            print("吃货的梦想就是天天有得吃!")
            self.hungry = False
        else:
            print("太撑了,吃不下了!")
            self.hungry = True

Python 虽然支持多继承的形式,但我们一般不使用多继承,因为容易引起混乱。

class DerivedClassName(Base1, Base2, Base3):

       statement-1

              .

              .

              .

       statement-N

需要注意圆括号中父类的顺序,若是父类中有相同的方法名,而在子类使用时未指定,Python 从左至右搜索,即方法在子类中未找到时,从左到右查找父类中是否包含方法。

例子:

# 类定义
class People:
    # 定义基本属性
    name = ''
    age = 0
    # 定义私有属性,私有属性在类外部无法直接进行访问
    __weight = 0
    # 定义构造方法
    def __init__(self, n, a, w):
        self.name = n
        self.age = a
        self.__weight = w
    def speak(self):
        print("%s 说: 我 %d 岁。" % (self.name, self.age))
        
# 单继承示例
class Student(People):
    grade = ''
     def __init__(self, n, a, w, g):
        # 调用父类的构函
        People.__init__(self, n, a, w)
        self.grade = g
        
     # 覆写父类的方法
    def speak(self):
        print("%s 说: 我 %d 岁了,我在读 %d 年级" % (self.name, self.age, self.grade))
        
# 另一个类,多重继承之前的准备
class Speaker:
    topic = ''
    name = ''
     def __init__(self, n, t):
        self.name = n
        self.topic = t
     def speak(self):
        print("我叫 %s,我是一个演说家,我演讲的主题是 %s" % (self.name, self.topic))
        
# 多重继承
class Sample01(Speaker, Student):
    a = ''
    def __init__(self, n, a, w, g, t):
        Student.__init__(self, n, a, w, g)
        Speaker.__init__(self, n, t)
# 方法名同,默认调用的是在括号中排前地父类的方法
test = Sample01("Tim", 25, 80, 4, "Python")
test.speak()  
# 我叫 Tim,我是一个演说家,我演讲的主题是 Python

class Sample02(Student, Speaker):
    a = ''
    def __init__(self, n, a, w, g, t):
        Student.__init__(self, n, a, w, g)
        Speaker.__init__(self, n, t)
# 方法名同,默认调用的是在括号中排前地父类的方法
test = Sample02("Tim", 25, 80, 4, "Python")
test.speak()  
# Tim 说: 我 25 岁了,我在读 4 年级

6.组合

例子:

class Turtle:
    def __init__(self, x):
        self.num = x
class Fish:
    def __init__(self, x):
        self.num = x
class Pool:
    def __init__(self, x, y):
        self.turtle = Turtle(x)
        self.fish = Fish(y)
      def print_num(self):
        print("水池里面有乌龟%s只,小鱼%s条" % (self.turtle.num, self.fish.num))
        
p = Pool(2, 3)
p.print_num()
# 水池里面有乌龟2只,小鱼3条

7.类、类对象和实例对象

Python入门(下)_第1张图片
类对象:创建一个类,其实也是一个对象也在内存开辟了一块空间,称为类对象,类对象只有一个。

class A(object):

       pass

实例对象:就是通过实例化类创建的对象,称为实例对象,实例对象可以有多个。

类属性:类里面方法外面定义的变量称为类属性。类属性所属于类对象并且多个实例对象之间共享同一个类属性,说白了就是类属性所有的通过该类实例化的对象都能共享。

例子:

class A():
    a = 0  #类属性
    def __init__(self, xx):
        A.a = xx  #使用类属性可以通过 (类名.类属性)调用。

实例属性:实例属性和具体的某个实例对象有关系,并且一个实例对象和另外一个实例对象是不共享属性的,说白了实例属性只能在自己的对象里面使用,其他的对象不能直接使用,因为self是谁调用,它的值就属于该对象。

例子:

# 创建类对象
class Test(object):
    class_attr = 100  # 类属性
      def __init__(self):
        self.sl_attr = 100  # 实例属性
      def func(self):
        print('类对象.类属性的值:', Test.class_attr)  # 调用类属性
        print('self.类属性的值', self.class_attr)  # 相当于把类属性 变成实例属性
        print('self.实例属性的值', self.sl_attr)  # 调用实例属性
        
a = Test()
a.func()
# 类对象.类属性的值: 100
# self.类属性的值 100
# self.实例属性的值 100

b = Test()
b.func()
# 类对象.类属性的值: 100
# self.类属性的值 100
# self.实例属性的值 100

a.class_attr = 200
a.sl_attr = 200
a.func()
# 类对象.类属性的值: 100
# self.类属性的值 200
# self.实例属性的值 200

b.func()
# 类对象.类属性的值: 100
# self.类属性的值 100
# self.实例属性的值 100

Test.class_attr = 300
a.func()
# 类对象.类属性的值: 300
# self.类属性的值 200
# self.实例属性的值 200

b.func()
# 类对象.类属性的值: 300
# self.类属性的值 300
# self.实例属性的值 100

注意:属性与方法名相同,属性会覆盖方法。

8.什么是绑定?

Python 严格要求方法需要有实例才能被调用,这种限制其实就是 Python 所谓的绑定概念。

Python 对象的数据属性通常存储在名为.__ dict__的字典中,我们可以直接访问__dict__,或利用 Python 的内置函数vars()获取.__ dict__

例子:

class CC:
    def setXY(self, x, y):
        self.x = x
        self.y = y
     def printXY(self):
        print(self.x, self.y)

dd = CC()
print(dd.__dict__)
# {}

print(vars(dd))
# {}

print(CC.__dict__)
# {'__module__': '__main__', 'setXY': , 'printXY': , '__dict__': , '__weakref__': , '__doc__': None}

dd.setXY(4, 5)
print(dd.__dict__)
# {'x': 4, 'y': 5}

print(vars(CC))
# {'__module__': '__main__', 'setXY': , 'printXY': , '__dict__': , '__weakref__': , '__doc__': None}

print(CC.__dict__)
# {'__module__': '__main__', 'setXY': , 'printXY': , '__dict__': , '__weakref__': , '__doc__': None}

9.一些相关的内置函数(BIF)

  • issubclass(class, classinfo) 方法用于判断参数 class 是否是类型参数 classinfo 的子类。
  • 一个类被认为是其自身的子类。
  • classinfo可以是类对象的元组,只要class是其中任何一个候选类的子类,则返回True

例子:

class A:
    pass
class B(A):
    pass
print(issubclass(B, A))  # True
print(issubclass(B, B))  # True
print(issubclass(A, B))  # False
print(issubclass(B, object))  # True
  • isinstance(object, classinfo) 方法用于判断一个对象是否是一个已知的类型,类似type()
  • type()不会认为子类是一种父类类型,不考虑继承关系。
  • isinstance()会认为子类是一种父类类型,考虑继承关系。
  • 如果第一个参数不是对象,则永远返回False
  • 如果第二个参数不是类或者由类对象组成的元组,会抛出一个TypeError异常。

例子:

a = 2
print(isinstance(a, int))  # True
print(isinstance(a, str))  # False
print(isinstance(a, (str, int, list)))  # True

class A:
    pass
class B(A):
    pass

print(isinstance(A(), A))  # True
print(type(A()) == A)  # True
print(isinstance(B(), A))  # True
print(type(B()) == A)  # False
  • hasattr(object, name)用于判断对象是否包含对应的属性。

例子:

class Coordinate:
    x = 10
    y = -5
    z = 0
point1 = Coordinate()
print(hasattr(point1, 'x'))  # True
print(hasattr(point1, 'y'))  # True
print(hasattr(point1, 'z'))  # True
print(hasattr(point1, 'no'))  # False
  • getattr(object, name[, default])用于返回一个对象属性值。

例子:

class A(object):
    bar = 1
a = A()
print(getattr(a, 'bar'))  # 1
print(getattr(a, 'bar2', 3))  # 3
print(getattr(a, 'bar2'))
# AttributeError: 'A' object has no attribute 'bar2'
  • setattr(object, name, value)对应函数 getattr(),用于设置属性值,该属性不一定是存在的。

例子:

class A(object):
    bar = 1
a = A()
print(getattr(a, 'bar'))  # 1
setattr(a, 'bar', 5)
print(a.bar)  # 5
setattr(a, "age", 28)
print(a.age)  # 28
  • delattr(object, name)用于删除属性。

例子:

class Coordinate:
    x = 10
    y = -5
    z = 0
    
point1 = Coordinate()
print('x = ', point1.x)  # x =  10
print('y = ', point1.y)  # y =  -5
print('z = ', point1.z)  # z =  0

delattr(Coordinate, 'z')
print('--删除 z 属性后--')  # --删除 z 属性后--
print('x = ', point1.x)  # x =  10
print('y = ', point1.y)  # y =  -5

# 触发错误
print('z = ', point1.z)
# AttributeError: 'Coordinate' object has no attribute 'z'
  • class property([fget[, fset[, fdel[, doc]]]])用于在新式类中返回属性值。
    • fget – 获取属性值的函数
    • fset – 设置属性值的函数
    • fdel – 删除属性值函数
    • doc – 属性描述信息

魔法方法

魔法方法总是被双下划线包围,例如__init__

魔法方法是面向对象的 Python 的一切,如果你不知道魔法方法,说明你还没能意识到面向对象的 Python 的强大。

魔法方法的“魔力”体现在它们总能够在适当的时候被自动调用。

魔法方法的第一个参数应为cls(类方法) 或者self(实例方法)。

  • cls:代表一个类的名称
  • self:代表一个实例对象的名称

1基本的魔法方法

  • __init__(self[, ...]) 构造器,当一个实例被创建的时候调用的初始化方法

例子:

class Rectangle:
    def __init__(self, x, y):
        self.x = x
        self.y = y
    def getPeri(self):
        return (self.x + self.y) * 2
    def getArea(self):
        return self.x * self.y

rect = Rectangle(4, 5)
print(rect.getPeri())  # 18
print(rect.getArea())  # 20
  • __new__(cls[, ...]) 在一个对象实例化的时候所调用的第一个方法,在调用__init__初始化前,先调用__new__
    • __new__至少要有一个参数cls,代表要实例化的类,此参数在实例化时由 Python 解释器自动提供,后面的参数直接传递给__init__
    • __new__对当前类进行了实例化,并将实例返回,传给__init__self。但是,执行了__new__,并不一定会进入__init__,只有__new__返回了,当前类cls的实例,当前类的__init__才会进入。

例子:

class A(object):
    def __init__(self, value):
        print("into A __init__")
        self.value = value
    def __new__(cls, *args, **kwargs):
        print("into A __new__")
        print(cls)
        return object.__new__(cls)

class B(A):
    def __init__(self, value):
        print("into B __init__")
        self.value = value
    def __new__(cls, *args, **kwargs):
        print("into B __new__")
        print(cls)
        return super().__new__(cls, *args, **kwargs)

b = B(10)
# 结果:
# into B __new__
# 
# into A __new__
# 
# into B __init__

class A(object):
    def __init__(self, value):
        print("into A __init__")
        self.value = value
    def __new__(cls, *args, **kwargs):
        print("into A __new__")
        print(cls)
        return object.__new__(cls)

class B(A):
    def __init__(self, value):
        print("into B __init__")
        self.value = value
    def __new__(cls, *args, **kwargs):
        print("into B __new__")
        print(cls)
        return super().__new__(A, *args, **kwargs)  # 改动了cls变为A

b = B(10)
# 结果:
# into B __new__
# 
# into A __new__
# 
  • __new__没有正确返回当前类cls的实例,那__init__是不会被调用的,即使是父类的实例也不行,将没有__init__被调用。

例子(利用__new__实现单例模式)

class Earth:
    pass
a = Earth()
print(id(a))  # 260728291456
b = Earth()
print(id(b))  # 260728291624

class Earth:
    __instance = None  # 定义一个类属性做判断
     def __new__(cls):
        if cls.__instance is None:
            cls.__instance = object.__new__(cls)
            return cls.__instance
        else:
            return cls.__instance

a = Earth()
print(id(a))  # 512320401648
b = Earth()
print(id(b))  # 512320401648
  • __new__方法主要是当你继承一些不可变的 class 时(比如int, str, tuple), 提供给你一个自定义这些类的实例化过程的途径。

例子:

class CapStr(str):
    def __new__(cls, string):
        string = string.upper()
        return str.__new__(cls, string)
a = CapStr("i love lsgogroup")
print(a)  # I LOVE LSGOGROUP
  • __del__(self) 析构器,当一个对象将要被系统回收之时调用的方法。

Python 采用自动引用计数(ARC)方式来回收对象所占用的空间,当程序中有一个变量引用该 Python 对象时,Python 会自动保证该对象引用计数为 1;当程序中有两个变量引用该 Python 对象时,Python 会自动保证该对象引用计数为 2,依此类推,如果一个对象的引用计数变成了 0,则说明程序中不再有变量引用该对象,表明程序不再需要该对象,因此 Python 就会回收该对象。

大部分时候,Python 的 ARC 都能准确、高效地回收系统中的每个对象。但如果系统中出现循环引用的情况,比如对象 a 持有一个实例变量引用对象 b,而对象 b 又持有一个实例变量引用对象 a,此时两个对象的引用计数都是 1,而实际上程序已经不再有变量引用它们,系统应该回收它们,此时 Python 的垃圾回收器就可能没那么快,要等专门的循环垃圾回收器(Cyclic Garbage Collector)来检测并回收这种引用循环。

例子:

class C(object):
    def __init__(self):
        print('into C __init__')
     def __del__(self):
        print('into C __del__')

c1 = C()
# into C __init__
c2 = c1
c3 = c2
del c3
del c2
del c1
# into C __del__
  • __str__(self):
    • 当你打印一个对象的时候,触发__str__
    • 当你使用%s格式化的时候,触发__str__
    • str强转数据类型的时候,触发__str__
  • __repr__(self)
    • reprstr的备胎
    • __str__的时候执行__str__,没有实现__str__的时候,执行__repr__
    • repr(obj)内置函数对应的结果是__repr__的返回值
    • 当你使用%r格式化的时候 触发__repr__

例子:

class Cat:
    """定义一个猫类"""
    
     def __init__(self, new_name, new_age):
        """在创建完对象之后 会自动调用, 它完成对象的初始化的功能"""
        self.name = new_name
        self.age = new_age
     def __str__(self):
        """返回一个对象的描述信息"""
        return "名字是:%s , 年龄是:%d" % (self.name, self.age)
     def __repr__(self):
        """返回一个对象的描述信息"""
        return "Cat:(%s,%d)" % (self.name, self.age)
     def eat(self):
        print("%s在吃鱼...." % self.name)
     def drink(self):
        print("%s在喝可乐..." % self.name)
     def introduce(self):
        print("名字是:%s, 年龄是:%d" % (self.name, self.age))

# 创建了一个对象
tom = Cat("汤姆", 30)
print(tom)  # 名字是:汤姆 , 年龄是:30
print(str(tom)) # 名字是:汤姆 , 年龄是:30
print(repr(tom))  # Cat:(汤姆,30)
tom.eat()  # 汤姆在吃鱼....
tom.introduce()  # 名字是:汤姆, 年龄是:30
        

__str__(self) 的返回结果可读性强。也就是说,__str__ 的意义是得到便于人们阅读的信息,就像下面的 ‘2019-10-11’ 一样。

__repr__(self) 的返回结果应更准确。怎么说,__repr__ 存在的目的在于调试,便于开发者使用。

例子:

import datetime
today = datetime.date.today()
print(str(today))  # 2019-10-11
print(repr(today))  # datetime.date(2019, 10, 11)
print('%s' %today)  # 2019-10-11
print('%r' %today)  # datetime.date(2019, 10, 11)

2.算术运算符

类型工厂函数,指的是“不通过类而是通过函数来创建对象”。

例子:

class C:
    pass
print(type(len))  # 
print(type(dir))  # 
print(type(int))  # 
print(type(list))  # 
print(type(tuple))  # 
print(type(C))  # 
print(int('123'))  # 123

# 这个例子中list工厂函数把一个元祖对象加工成了一个列表对象。
print(list((1, 2, 3)))  # [1, 2, 3]
  • __add__(self, other)定义加法的行为:+
  • __sub__(self, other)定义减法的行为:-

例子:

class MyClass:
    def __init__(self, height, weight):
        self.height = height
        self.weight = weight
        
    # 两个对象的长相加,宽不变.返回一个新的类
    def __add__(self, others):
        return MyClass(self.height + others.height, self.weight + others.weight)
        
    # 两个对象的宽相减,长不变.返回一个新的类
    def __sub__(self, others):
        return MyClass(self.height - others.height, self.weight - others.weight)

     # 说一下自己的参数
    def intro(self):
        print("高为", self.height, " 重为", self.weight)

def main():
    a = MyClass(height=10, weight=5)
    a.intro()
    b = MyClass(height=20, weight=10)
    b.intro()
    c = b - a
    c.intro()
    d = a + b
    d.intro()

if __name__ == '__main__':
    main()
# 高为 10  重为 5
# 高为 20  重为 10
# 高为 10  重为 5
# 高为 30  重为 15
  • __mul__(self, other)定义乘法的行为:*
  • __truediv__(self, other)定义真除法的行为:/
  • __floordiv__(self, other)定义整数除法的行为://
  • __mod__(self, other) 定义取模算法的行为:%
  • __divmod__(self, other)定义当被 divmod() 调用时的行为
  • divmod(a, b)把除数和余数运算结果结合起来,返回一个包含商和余数的元组(a // b, a % b)

例子:

print(divmod(7, 2))  # (3, 1)
print(divmod(8, 2))  # (4, 0)
  • __pow__(self, other[, module])定义当被 power() 调用或 ** 运算时的行为
  • __lshift__(self, other)定义按位左移位的行为:<<
  • __rshift__(self, other)定义按位右移位的行为:>>
  • __and__(self, other)定义按位与操作的行为:&
  • __xor__(self, other)定义按位异或操作的行为:^
  • __or__(self, other)定义按位或操作的行为:|

3.反算数运算符

反运算魔方方法,与算术运算符保持一一对应,不同之处就是反运算的魔法方法多了一个“r”。当文件左操作不支持相应的操作时被调用。

  • __radd__(self, other)定义加法的行为:+
  • __rsub__(self, other)定义减法的行为:-
  • __rmul__(self, other)定义乘法的行为:*
  • __rtruediv__(self, other)定义真除法的行为:/
  • __rfloordiv__(self, other)定义整数除法的行为://
  • __rmod__(self, other) 定义取模算法的行为:%
  • __rdivmod__(self, other)定义当被 divmod() 调用时的行为
  • __rpow__(self, other[, module])定义当被 power() 调用或 ** 运算时的行为
  • __rlshift__(self, other)定义按位左移位的行为:<<
  • __rrshift__(self, other)定义按位右移位的行为:>>
  • __rand__(self, other)定义按位与操作的行为:&
  • __rxor__(self, other)定义按位异或操作的行为:^
  • __ror__(self, other)定义按位或操作的行为:|

a + b
这里加数是a,被加数是b,因此是a主动,反运算就是如果a对象的__add__()方法没有实现或者不支持相应的操作,那么 Python 就会调用b__radd__()方法。

例子:

class Nint(int):
    def __radd__(self, other):
        return int.__sub__(other, self) # 注意 self 在后面
a = Nint(5)
b = Nint(3)
print(a + b)  # 8
print(1 + b)  # -2

4.增量赋值运算符

  • __iadd__(self, other)定义赋值加法的行为:+=
  • __isub__(self, other)定义赋值减法的行为:-=
  • __imul__(self, other)定义赋值乘法的行为:*=
  • __itruediv__(self, other)定义赋值真除法的行为:/=
  • __ifloordiv__(self, other)定义赋值整数除法的行为://=
  • __imod__(self, other)定义赋值取模算法的行为:%=
  • __ipow__(self, other[, modulo])定义赋值幂运算的行为:**=
  • __ilshift__(self, other)定义赋值按位左移位的行为:<<=
  • __irshift__(self, other)定义赋值按位右移位的行为:>>=
  • __iand__(self, other)定义赋值按位与操作的行为:&=
  • __ixor__(self, other)定义赋值按位异或操作的行为:^=
  • __ior__(self, other)定义赋值按位或操作的行为:|=

5.一元运算符

  • __neg__(self)定义正号的行为:+x
  • __pos__(self)定义负号的行为:-x
  • __abs__(self)定义当被abs()调用时的行为
  • __invert__(self)定义按位求反的行为:~x

6.属性访问

  • __getattr__(self, name): 定义当用户试图获取一个不存在的属性时的行为。
  • __getattribute__(self, name):定义当该类的属性被访问时的行为(先调用该方法,查看是否存在该属性,若不存在,接着去调用__getattr__)。
  • __setattr__(self, name, value):定义当一个属性被设置时的行为。
  • __delattr__(self, name):定义当一个属性被删除时的行为。

例子:

class C:
    def __getattribute__(self, item):
        print('__getattribute__')
        return super().__getattribute__(item)
    def __getattr__(self, item):
        print('__getattr__')
    def __setattr__(self, key, value):
        print('__setattr__')
        super().__setattr__(key, value)
    def __delattr__(self, item):
        print('__delattr__')
        super().__delattr__(item)

c = C()
c.x
# __getattribute__
# __getattr__
c.x = 1
# __setattr__
del c.x
# __delattr__

7.描述符

描述符就是将某种特殊类型的类的实例指派给另一个类的属性。

  • __get__(self, instance, owner)用于访问属性,它返回属性的值。
  • __set__(self, instance, value)将在属性分配操作中调用,不返回任何内容。
  • __del__(self, instance)控制删除操作,不返回任何内容。

例子:

class MyDecriptor:
    def __get__(self, instance, owner):
        print('__get__', self, instance, owner)
    def __set__(self, instance, value):
        print('__set__', self, instance, value)
    def __delete__(self, instance):
        print('__delete__', self, instance)

class Test:
    x = MyDecriptor()

t = Test()
t.x
# __get__ <__main__.MyDecriptor object at 0x000000CEAAEB6B00> <__main__.Test object at 0x000000CEABDC0898> 

t.x = 'x-man'
# __set__ <__main__.MyDecriptor object at 0x00000023687C6B00> <__main__.Test object at 0x00000023696B0940> x-man

del t.x
# __delete__ <__main__.MyDecriptor object at 0x000000EC9B160A90> <__main__.Test object at 0x000000EC9B160B38>

8.定制序列

协议(Protocols)与其它编程语言中的接口很相似,它规定你哪些方法必须要定义。然而,在 Python 中的协议就显得不那么正式。事实上,在 Python 中,协议更像是一种指南。

容器类型的协议

  • 如果说你希望定制的容器是不可变的话,你只需要定义__len__()__getitem__()方法。
  • 如果你希望定制的容器是可变的话,除了__len__()__getitem__()方法,你还需要定义__setitem__()__delitem__()两个方法。

例子(编写一个不可改变的自定义列表,要求记录列表中每个元素被访问的次数)

class CountList:
    def __init__(self, *args):
        self.values = [x for x in args]
        self.count = {
     }.fromkeys(range(len(self.values)), 0)
    def __len__(self):
        return len(self.values)
    def __getitem__(self, item):
        self.count[item] += 1
        return self.values[item]

c1 = CountList(1, 3, 5, 7, 9)
c2 = CountList(2, 4, 6, 8, 10)
print(c1[1])  # 3
print(c2[2])  # 6
print(c1[1] + c2[1])  # 7

print(c1.count)
# {0: 0, 1: 2, 2: 0, 3: 0, 4: 0}

print(c2.count)
# {0: 0, 1: 1, 2: 1, 3: 0, 4: 0}
  • __len__(self)定义当被len()调用时的行为(返回容器中元素的个数)。
  • __getitem__(self, key)定义获取容器中元素的行为,相当于self[key]
  • __setitem__(self, key, value)定义设置容器中指定元素的行为,相当于self[key] = value
  • __delitem__(self, key)定义删除容器中指定元素的行为,相当于del self[key]

例子(写一个可改变的自定义列表,要求记录列表中每个元素被访问的次数)

class CountList:
    def __init__(self, *args):
        self.values = [x for x in args]
        self.count = {
     }.fromkeys(range(len(self.values)), 0)
    def __len__(self):
        return len(self.values)
    def __getitem__(self, item):
        self.count[item] += 1
        return self.values[item]
    def __setitem__(self, key, value):
        self.values[key] = value
    def __delitem__(self, key):
        del self.values[key]
        for i in range(0, len(self.values)):
            if i >= key:
                self.count[i] = self.count[i + 1]
        self.count.pop(len(self.values))

c1 = CountList(1, 3, 5, 7, 9)
c2 = CountList(2, 4, 6, 8, 10)
print(c1[1])  # 3
print(c2[2])  # 6
c2[2] = 12
print(c1[1] + c2[2])  # 15
print(c1.count)
# {0: 0, 1: 2, 2: 0, 3: 0, 4: 0}
print(c2.count)
# {0: 0, 1: 0, 2: 2, 3: 0, 4: 0}
del c1[1]
print(c1.count)
# {0: 0, 1: 0, 2: 0, 3: 0}

9.迭代器

  • 迭代是 Python 最强大的功能之一,是访问集合元素的一种方式。
  • 迭代器是一个可以记住遍历的位置的对象。
  • 迭代器对象从集合的第一个元素开始访问,直到所有的元素被访问完结束。
  • 迭代器只能往前不会后退。
  • 字符串,列表或元组对象都可用于创建迭代器:

例子:

links = {
     'B': '百度', 'A': '阿里', 'T': '腾讯'}
for each in links:
    print('%s -> %s' % (each, links[each]))
'''
B -> 百度
A -> 阿里
T -> 腾讯
'''
for each in iter(links):
    print('%s -> %s' % (each, links[each]))
  • 迭代器有两个基本的方法:iter()next()
  • iter(object) 函数用来生成迭代器。
  • next(iterator[, default]) 返回迭代器的下一个项目。
  • iterator – 可迭代对象
  • default – 可选,用于设置在没有下一个元素时返回该默认值,如果不设置,又没有下一个元素则会触发 StopIteration 异常。

例子:

links = {
     'B': '百度', 'A': '阿里', 'T': '腾讯'}
it = iter(links)
while True:
    try:
        each = next(it)
    except StopIteration:
        break
    print(each)
# B
# A
# T
it = iter(links)
print(next(it))  # B
print(next(it))  # A
print(next(it))  # T
print(next(it))  # StopIteration

把一个类作为一个迭代器使用需要在类中实现两个魔法方法 __iter__()__next__()

  • __iter__(self)定义当迭代容器中的元素的行为,返回一个特殊的迭代器对象, 这个迭代器对象实现了 __next__() 方法并通过 StopIteration 异常标识迭代的完成。
  • __next__() 返回下一个迭代器对象。
  • StopIteration 异常用于标识迭代的完成,防止出现无限循环的情况,在 __next__() 方法中我们可以设置在完成指定循环次数后触发 StopIteration 异常来结束迭代。

例子:

class Fibs:
    def __init__(self, n=10):
        self.a = 0
        self.b = 1
        self.n = n
    def __iter__(self):
        return self
    def __next__(self):
        self.a, self.b = self.b, self.a + self.b
        if self.a > self.n:
            raise StopIteration
        return self.a

fibs = Fibs(100)
for each in fibs:
    print(each, end=' ')
# 1 1 2 3 5 8 13 21 34 55 89

10.生成器

  • 在 Python 中,使用了 yield 的函数被称为生成器(generator)。
  • 跟普通函数不同的是,生成器是一个返回迭代器的函数,只能用于迭代操作,更简单点理解生成器就是一个迭代器。
  • 在调用生成器运行的过程中,每次遇到 yield 时函数会暂停并保存当前所有的运行信息,返回 yield 的值, 并在下一次执行 next() 方法时从当前位置继续运行。
  • 调用一个生成器函数,返回的是一个迭代器对象。

例子:

def myGen():
    print('生成器执行!')
    yield 1
    yield 2

myG = myGen()
for each in myG:
    print(each)

'''
生成器执行!
1
2
'''

yG = myGen()
print(next(myG))  
# 生成器执行!
# 1

print(next(myG))  # 2
print(next(myG))  # StopIteration

例子(用生成器实现斐波那契数列)

def libs(n):
    a = 0
    b = 1
    while True:
        a, b = b, a + b
        if a > n:
            return
        yield a
for each in libs(100):
    print(each, end=' ')
# 1 1 2 3 5 8 13 21 34 55 89

你可能感兴趣的:(python)