还记得 Python 里面“万物皆对象”么?Python 把函数也当成对象,可以从另一个函数中返回出来而去构建高阶函数,比如:参数是函数、返回值是函数。
我们首先来介绍函数的定义。
def functionname (parameters):
“函数_文档字符串”
function_suite
return [expression]
例子:
def printme(str):
print(str)
printme("我要调用用户自定义函数!") # 我要调用用户自定义函数!
printme("再次调用同一函数") # 再次调用同一函数
temp = printme('hello') # hello
print(temp) # None
def MyFirstFunction(name):
"函数定义过程中name是形参"
# 因为Ta只是一个形式,表示占据一个参数位置
print('传递进来的{0}叫做实参,因为Ta是具体的参数值!'.format(name))
MyFirstFunction('老马的程序人生')
# 传递进来的老马的程序人生叫做实参,因为Ta是具体的参数值!
print(MyFirstFunction.__doc__)
# 函数定义过程中name是形参
help(MyFirstFunction)
# Help on function MyFirstFunction in module __main__:
# MyFirstFunction(name)
# 函数定义过程中name是形参
Python 的函数具有非常灵活多样的参数形态,既可以实现简单的调用,又可以传入非常复杂的参数。从简到繁的参数形态如下:
1.位置参数
def functionname(arg1):
“函数_文档字符串”
function_suite
return [expression]
arg1
- 位置参数 ,这些参数在调用函数 (call function) 时位置要固定。2.默认参数
def functionname(arg1, arg2=v):
“函数_文档字符串”
function_suite
return [expression]
arg2 = v
- 默认参数 = 默认值,调用函数时,默认参数的值如果没有传入,则被认为是默认值。例子:
def printinfo(name, age=8):
print('Name:{0},Age:{1}'.format(name, age))
printinfo('小马') # Name:小马,Age:8
printinfo('小马', 10) # Name:小马,Age:10
3. 可变参数
顾名思义,可变参数就是传入的参数个数是可变的,可以是 0, 1, 2 到任意个,是不定长的参数。
def functionname(arg1, arg2=v, *args):
“函数_文档字符串”
function_suite
return [expression]
*args
- 可变参数,可以是从零个到任意个,自动组装成元组。例子:
def printinfo(arg1, *args):
print(arg1)
for var in args:
print(var)
printinfo(10) # 10
printinfo(70, 60, 50)
# 70
# 60
# 50
4. 关键字参数
def functionname(arg1, arg2=v, *args, **kw):
“函数_文档字符串”
function_suite
return [expression]
**kw
- 关键字参数,可以是从零个到任意个,自动组装成字典。例子:
def printinfo(arg1, *args, **kwargs):
print(arg1)
print(args)
print(kwargs)
printinfo(70, 60, 50)
# 70
# (60, 50)
# {}
printinfo(70, 60, 50, a=1, b=2)
# 70
# (60, 50)
# {'a': 1, 'b': 2}
「可变参数」和「关键字参数」的同异总结如下:
可变参数允许传入零个到任意个参数,它们在函数调用时自动组装为一个元组 (tuple)。
关键字参数允许传入零个到任意个参数,它们在函数内部自动组装为一个字典 (dict)。
5. 命名关键字参数
def functionname(arg1, arg2=v, *args, *, nkw, **kw):
“函数_文档字符串”
function_suite
return [expression]
*, nkw
- 命名关键字参数,用户想要输入的关键字参数,定义方式是在nkw 前面加个分隔符 *
。例子:
def printinfo(arg1, *, nkw, **kwargs):
print(arg1)
print(nkw)
print(kwargs)
printinfo(70, nkw=10, a=1, b=2)
# 70
# 10
# {'a': 1, 'b': 2}
printinfo(70, 10, a=1, b=2)
# TypeError: printinfo() takes 1 positional argument but 2 were given
6. 参数组合
在 Python 中定义函数,可以用位置参数、默认参数、可变参数、命名关键字参数和关键字参数,这 5 种参数中的 4 个都可以一起使用,但是注意,参数定义的顺序必须是:
要注意定义可变参数和关键字参数的语法:
*args
是可变参数,args
接收的是一个 tuple
**kw
是关键字参数,kw
接收的是一个 dict
命名关键字参数是为了限制调用者可以传入的参数名,同时可以提供默认值。定义命名关键字参数不要忘了写分隔符 *
,否则定义的是位置参数。
警告:虽然可以组合多达 5 种参数,但不要同时使用太多的组合,否则函数很难懂。
例子:
def back():
return [1, '小马的程序人生', 3.14]
print(back()) # [1, '小马的程序人生', 3.14]
例子:
num = 1
def fun1():
global num # 需要使用 global 关键字声明
print(num) # 1
num = 123
print(num) # 123
fun1()
print(num) # 123
闭包
例子:
def funX(x):
def funY(y):
return x * y
return funY
i = funX(8)
print(type(i)) #
print(i(5)) # 40
例子:
# 利用循环
n = 5
for k in range(1, 5):
n = n * k
print(n) # 120
# 利用递归
def factorial(n):
if n == 1:
return 1
return n * factorial(n - 1)
print(factorial(5)) # 120
在Python里由两类函数:
def
关键词定义的正规函数lambda
关键词定义的匿名函数Python 使用 lambda
关键词来创建匿名函数,而非def
关键词,它没有函数名,其语法结构如下:
lambda argument_list: expression
lambda
- 定义匿名函数的关键词。argument_list
- 函数参数,它们可以是位置参数、默认参数、关键字参数,和正规函数里的参数类型一样。:
- 冒号,在函数参数和表达式中间要加个冒号。expression
- 只是一个表达式,输入函数参数,输出一些值。注意:
expression
中没有 return 语句,因为 lambda 不需要它来返回,表达式本身结果就是返回值。例子:
def sqr(x):
return x ** 2
y = [sqr(x) for x in range(10)]
print(y)
# [0, 1, 4, 9, 16, 25, 36, 49, 64, 81]
lbd_sqr = lambda x: x ** 2
print(lbd_sqr)
# at 0x000000BABB6AC1E0>
y = [lbd_sqr(x) for x in range(10)]
print(y)
# [0, 1, 4, 9, 16, 25, 36, 49, 64, 81]
sumary = lambda arg1, arg2: arg1 + arg2
print(sumary(10, 20)) # 30
函数式编程 是指代码中每一块都是不可变的,都由纯函数的形式组成。这里的纯函数,是指函数本身相互独立、互不影响,对于相同的输入,总会有相同的输出,没有任何副作用。
例子(非函数式编程)
def f(x):
for i in range(0, len(x)):
x[i] += 10
return x
x = [1, 2, 3]
f(x)
print(x)
# [11, 12, 13]
例子(函数式编程)
def f(x):
y = []
for item in x:
y.append(item + 10)
return y
x = [1, 2, 3]
f(x)
print(x)
# [1, 2, 3]
匿名函数 常常应用于函数式编程的高阶函数 (high-order function)中,主要有两种形式:
如,在 filter
和map
函数中的应用:
filter(function, iterable)
过滤序列,过滤掉不符合条件的元素,返回一个迭代器对象,如果要转换为列表,可以使用 list()
来转换。例子:
odd = lambda x: x % 2 == 1
templist = filter(odd, [1, 2, 3, 4, 5, 6, 7, 8, 9])
print(list(templist)) # [1, 3, 5, 7, 9]
map(function, *iterables)
根据提供的函数对指定序列做映射。例子:
m1 = map(lambda x: x ** 2, [1, 2, 3, 4, 5])
print(list(m1))
# [1, 4, 9, 16, 25]
m2 = map(lambda x, y: x + y, [1, 3, 5, 7, 9], [2, 4, 6, 8, 10])
print(list(m2))
# [3, 7, 11, 15, 19]
除了 Python 这些内置函数,我们也可以自己定义高阶函数。
对象是类的实例,换句话说,类主要定义对象的结构,然后我们以类为模板创建对象,类不但包含方法定义,而且还包含所以实例共享的数据。
我们可以使用关键字 class
定义 Python 类,关键字后面紧跟类的名称、分号和类的实现。
例子:
class Turtle: # Python中的类名约定以大写字母开头
"""关于类的一个简单例子"""
# 属性
color = 'green'
weight = 10
legs = 4
shell = True
mouth = '大嘴'
# 方法
def climb(self):
print('我正在很努力的向前爬...')
def run(self):
print('我正在飞快的向前跑...')
def bite(self):
print('咬死你咬死你!!')
def eat(self):
print('有得吃,真满足...')
def sleep(self):
print('困了,睡了,晚安,zzz')
tt = Turtle()
print(tt)
# <__main__.Turtle object at 0x0000007C32D67F98>
print(type(tt))
#
print(tt.__class__)
#
print(tt.__class__.__name__)
# Turtle
tt.climb()
# 我正在很努力的向前爬...
tt.run()
# 我正在飞快的向前跑...
tt.bite()
# 咬死你咬死你!!
# Python类也是对象。它们是type的实例
print(type(Turtle))
#
例子:
class MyList(list):
pass
lst = MyList([1, 5, 2, 7, 8])
lst.append(9)
lst.sort()
print(lst)
# [1, 2, 5, 7, 8, 9]
例子:
class Animal:
def run(self):
raise AttributeError('子类必须实现这个方法')
class People(Animal):
def run(self):
print('人正在走')
class Pig(Animal):
def run(self):
print('pig is walking')
class Dog(Animal):
def run(self):
print('dog is running')
def func(animal):
animal.run()
func(Pig())
# pig is walking
Python 的 self
相当于 C++ 的 this
指针。
例子:
class Test:
def prt(self):
print(self)
print(self.__class__)
t = Test()
t.prt()
# <__main__.Test object at 0x000000BC5A351208>
#
类的方法与普通的函数只有一个特别的区别 —— 它们必须有一个额外的第一个参数名称(对应于该实例,即该对象本身),按照惯例它的名称是 self
。在调用方法时,我们无需明确提供与参数 self
相对应的参数。
例子:
class Ball:
def setName(self, name):
self.name = name
def kick(self):
print("我叫%s,该死的,谁踢我..." % self.name)
a = Ball()
a.setName("球A")
b = Ball()
b.setName("球B")
c = Ball()
c.setName("球C")
a.kick()
# 我叫球A,该死的,谁踢我...
b.kick()
# 我叫球B,该死的,谁踢我...
据说,Python 的对象天生拥有一些神奇的方法,它们是面向对象的 Python 的一切…
它们是可以给你的类增加魔力的特殊方法…
如果你的对象实现了这些方法中的某一个,那么这个方法就会在特殊的情况下被 Python 所调用,而这一切都是自动发生的…
类有一个名为__init__(self[, param1, param2...])
的魔法方法,该方法在类实例化时会自动调用。
例子:
class Ball:
def __init__(self, name):
self.name = name
def kick(self):
print("我叫%s,该死的,谁踢我..." % self.name)
a = Ball("球A")
b = Ball("球B")
c = Ball("球C")
a.kick()
# 我叫球A,该死的,谁踢我...
b.kick()
# 我叫球B,该死的,谁踢我...
在 Python 中定义私有变量只需要在变量名或函数名前加上“__”两个下划线,那么这个函数或变量就会为私有的了。
例子(类的私有属性实例)
class JustCounter:
__secretCount = 0 # 私有变量
publicCount = 0 # 公开变量
def count(self):
self.__secretCount += 1
self.publicCount += 1
print(self.__secretCount)
counter = JustCounter()
counter.count() # 1
counter.count() # 2
print(counter.publicCount) # 2
# Python的私有为伪私有
print(counter._JustCounter__secretCount) # 2
print(counter.__secretCount)
# AttributeError: 'JustCounter' object has no attribute '__secretCount'
例子(类的私有方法实例)
class Site:
def __init__(self, name, url):
self.name = name # public
self.__url = url # private
def who(self):
print('name : ', self.name)
print('url : ', self.__url)
def __foo(self): # 私有方法
print('这是私有方法')
def foo(self): # 公共方法
print('这是公共方法')
self.__foo()
x = Site('老马的程序人生', 'https://blog.csdn.net/LSGO_MYP')
x.who()
# name : 老马的程序人生
# url : https://blog.csdn.net/LSGO_MYP
x.foo()
# 这是公共方法
# 这是私有方法
x.__foo()
# AttributeError: 'Site' object has no attribute '__foo'
Python 同样支持类的继承,派生类的定义如下所示:
class DerivedClassName(BaseClassName):
statement-1
.
.
.
statement-N
BaseClassName
(基类名)必须与派生类定义在一个作用域内。除了类,还可以用表达式,基类定义在另一个模块中时这一点非常有用:
class DerivedClassName(modname.BaseClassName):
statement-1
.
.
.
statement-N
例子(如果子类中定义与父类同名的方法或属性,则会自动覆盖父类对应的方法或属性。)
# 类定义
class people:
# 定义基本属性
name = ''
age = 0
# 定义私有属性,私有属性在类外部无法直接进行访问
__weight = 0
# 定义构造方法
def __init__(self, n, a, w):
self.name = n
self.age = a
self.__weight = w
def speak(self):
print("%s 说: 我 %d 岁。" % (self.name, self.age))
# 单继承示例
class student(people):
grade = ''
def __init__(self, n, a, w, g):
# 调用父类的构函
people.__init__(self, n, a, w)
self.grade = g
# 覆写父类的方法
def speak(self):
print("%s 说: 我 %d 岁了,我在读 %d 年级" % (self.name, self.age, self.grade))
s = student('小马的程序人生', 10, 60, 3)
s.speak()
# 小马的程序人生 说: 我 10 岁了,我在读 3 年级
注意:如果上面的程序去掉:people.__init__(self, n, a, w)
,则输出:说: 我 0 岁了,我在读 3 年级
,因为子类的构造方法把父类的构造方法覆盖了。
例子:
import random
class Fish:
def __init__(self):
self.x = random.randint(0, 10)
self.y = random.randint(0, 10)
def move(self):
self.x -= 1
print("我的位置", self.x, self.y)
class GoldFish(Fish): # 金鱼
pass
class Carp(Fish): # 鲤鱼
pass
class Salmon(Fish): # 三文鱼
pass
class Shark(Fish): # 鲨鱼
def __init__(self):
self.hungry = True
def eat(self):
if self.hungry:
print("吃货的梦想就是天天有得吃!")
self.hungry = False
else:
print("太撑了,吃不下了!")
self.hungry = True
g = GoldFish()
g.move() # 我的位置 9 4
s = Shark()
s.eat() # 吃货的梦想就是天天有得吃!
s.move()
# AttributeError: 'Shark' object has no attribute 'x'
解决该问题可用以下两种方法:
Fish.__init__(self)
class Shark(Fish): # 鲨鱼
def __init__(self):
Fish.__init__(self)
self.hungry = True
def eat(self):
if self.hungry:
print("吃货的梦想就是天天有得吃!")
self.hungry = False
else:
print("太撑了,吃不下了!")
self.hungry = True
super().__init__()
class Shark(Fish): # 鲨鱼
def __init__(self):
super().__init__()
self.hungry = True
def eat(self):
if self.hungry:
print("吃货的梦想就是天天有得吃!")
self.hungry = False
else:
print("太撑了,吃不下了!")
self.hungry = True
Python 虽然支持多继承的形式,但我们一般不使用多继承,因为容易引起混乱。
class DerivedClassName(Base1, Base2, Base3):
statement-1
.
.
.
statement-N
需要注意圆括号中父类的顺序,若是父类中有相同的方法名,而在子类使用时未指定,Python 从左至右搜索,即方法在子类中未找到时,从左到右查找父类中是否包含方法。
例子:
# 类定义
class People:
# 定义基本属性
name = ''
age = 0
# 定义私有属性,私有属性在类外部无法直接进行访问
__weight = 0
# 定义构造方法
def __init__(self, n, a, w):
self.name = n
self.age = a
self.__weight = w
def speak(self):
print("%s 说: 我 %d 岁。" % (self.name, self.age))
# 单继承示例
class Student(People):
grade = ''
def __init__(self, n, a, w, g):
# 调用父类的构函
People.__init__(self, n, a, w)
self.grade = g
# 覆写父类的方法
def speak(self):
print("%s 说: 我 %d 岁了,我在读 %d 年级" % (self.name, self.age, self.grade))
# 另一个类,多重继承之前的准备
class Speaker:
topic = ''
name = ''
def __init__(self, n, t):
self.name = n
self.topic = t
def speak(self):
print("我叫 %s,我是一个演说家,我演讲的主题是 %s" % (self.name, self.topic))
# 多重继承
class Sample01(Speaker, Student):
a = ''
def __init__(self, n, a, w, g, t):
Student.__init__(self, n, a, w, g)
Speaker.__init__(self, n, t)
# 方法名同,默认调用的是在括号中排前地父类的方法
test = Sample01("Tim", 25, 80, 4, "Python")
test.speak()
# 我叫 Tim,我是一个演说家,我演讲的主题是 Python
class Sample02(Student, Speaker):
a = ''
def __init__(self, n, a, w, g, t):
Student.__init__(self, n, a, w, g)
Speaker.__init__(self, n, t)
# 方法名同,默认调用的是在括号中排前地父类的方法
test = Sample02("Tim", 25, 80, 4, "Python")
test.speak()
# Tim 说: 我 25 岁了,我在读 4 年级
例子:
class Turtle:
def __init__(self, x):
self.num = x
class Fish:
def __init__(self, x):
self.num = x
class Pool:
def __init__(self, x, y):
self.turtle = Turtle(x)
self.fish = Fish(y)
def print_num(self):
print("水池里面有乌龟%s只,小鱼%s条" % (self.turtle.num, self.fish.num))
p = Pool(2, 3)
p.print_num()
# 水池里面有乌龟2只,小鱼3条
类对象:创建一个类,其实也是一个对象也在内存开辟了一块空间,称为类对象,类对象只有一个。
class A(object):
pass
实例对象:就是通过实例化类创建的对象,称为实例对象,实例对象可以有多个。
类属性:类里面方法外面定义的变量称为类属性。类属性所属于类对象并且多个实例对象之间共享同一个类属性,说白了就是类属性所有的通过该类实例化的对象都能共享。
例子:
class A():
a = 0 #类属性
def __init__(self, xx):
A.a = xx #使用类属性可以通过 (类名.类属性)调用。
实例属性:实例属性和具体的某个实例对象有关系,并且一个实例对象和另外一个实例对象是不共享属性的,说白了实例属性只能在自己的对象里面使用,其他的对象不能直接使用,因为self
是谁调用,它的值就属于该对象。
例子:
# 创建类对象
class Test(object):
class_attr = 100 # 类属性
def __init__(self):
self.sl_attr = 100 # 实例属性
def func(self):
print('类对象.类属性的值:', Test.class_attr) # 调用类属性
print('self.类属性的值', self.class_attr) # 相当于把类属性 变成实例属性
print('self.实例属性的值', self.sl_attr) # 调用实例属性
a = Test()
a.func()
# 类对象.类属性的值: 100
# self.类属性的值 100
# self.实例属性的值 100
b = Test()
b.func()
# 类对象.类属性的值: 100
# self.类属性的值 100
# self.实例属性的值 100
a.class_attr = 200
a.sl_attr = 200
a.func()
# 类对象.类属性的值: 100
# self.类属性的值 200
# self.实例属性的值 200
b.func()
# 类对象.类属性的值: 100
# self.类属性的值 100
# self.实例属性的值 100
Test.class_attr = 300
a.func()
# 类对象.类属性的值: 300
# self.类属性的值 200
# self.实例属性的值 200
b.func()
# 类对象.类属性的值: 300
# self.类属性的值 300
# self.实例属性的值 100
注意:属性与方法名相同,属性会覆盖方法。
Python 严格要求方法需要有实例才能被调用,这种限制其实就是 Python 所谓的绑定概念。
Python 对象的数据属性通常存储在名为.__ dict__
的字典中,我们可以直接访问__dict__
,或利用 Python 的内置函数vars()
获取.__ dict__
。
例子:
class CC:
def setXY(self, x, y):
self.x = x
self.y = y
def printXY(self):
print(self.x, self.y)
dd = CC()
print(dd.__dict__)
# {}
print(vars(dd))
# {}
print(CC.__dict__)
# {'__module__': '__main__', 'setXY': , 'printXY': , '__dict__': , '__weakref__': , '__doc__': None}
dd.setXY(4, 5)
print(dd.__dict__)
# {'x': 4, 'y': 5}
print(vars(CC))
# {'__module__': '__main__', 'setXY': , 'printXY': , '__dict__': , '__weakref__': , '__doc__': None}
print(CC.__dict__)
# {'__module__': '__main__', 'setXY': , 'printXY': , '__dict__': , '__weakref__': , '__doc__': None}
issubclass(class, classinfo)
方法用于判断参数 class 是否是类型参数 classinfo 的子类。classinfo
可以是类对象的元组,只要class是其中任何一个候选类的子类,则返回True
。例子:
class A:
pass
class B(A):
pass
print(issubclass(B, A)) # True
print(issubclass(B, B)) # True
print(issubclass(A, B)) # False
print(issubclass(B, object)) # True
isinstance(object, classinfo)
方法用于判断一个对象是否是一个已知的类型,类似type()
。type()
不会认为子类是一种父类类型,不考虑继承关系。isinstance()
会认为子类是一种父类类型,考虑继承关系。False
。TypeError
异常。例子:
a = 2
print(isinstance(a, int)) # True
print(isinstance(a, str)) # False
print(isinstance(a, (str, int, list))) # True
class A:
pass
class B(A):
pass
print(isinstance(A(), A)) # True
print(type(A()) == A) # True
print(isinstance(B(), A)) # True
print(type(B()) == A) # False
hasattr(object, name)
用于判断对象是否包含对应的属性。例子:
class Coordinate:
x = 10
y = -5
z = 0
point1 = Coordinate()
print(hasattr(point1, 'x')) # True
print(hasattr(point1, 'y')) # True
print(hasattr(point1, 'z')) # True
print(hasattr(point1, 'no')) # False
getattr(object, name[, default])
用于返回一个对象属性值。例子:
class A(object):
bar = 1
a = A()
print(getattr(a, 'bar')) # 1
print(getattr(a, 'bar2', 3)) # 3
print(getattr(a, 'bar2'))
# AttributeError: 'A' object has no attribute 'bar2'
setattr(object, name, value)
对应函数 getattr()
,用于设置属性值,该属性不一定是存在的。例子:
class A(object):
bar = 1
a = A()
print(getattr(a, 'bar')) # 1
setattr(a, 'bar', 5)
print(a.bar) # 5
setattr(a, "age", 28)
print(a.age) # 28
delattr(object, name)
用于删除属性。例子:
class Coordinate:
x = 10
y = -5
z = 0
point1 = Coordinate()
print('x = ', point1.x) # x = 10
print('y = ', point1.y) # y = -5
print('z = ', point1.z) # z = 0
delattr(Coordinate, 'z')
print('--删除 z 属性后--') # --删除 z 属性后--
print('x = ', point1.x) # x = 10
print('y = ', point1.y) # y = -5
# 触发错误
print('z = ', point1.z)
# AttributeError: 'Coordinate' object has no attribute 'z'
class property([fget[, fset[, fdel[, doc]]]])
用于在新式类中返回属性值。
fget
– 获取属性值的函数fset
– 设置属性值的函数fdel
– 删除属性值函数doc
– 属性描述信息魔法方法总是被双下划线包围,例如__init__
。
魔法方法是面向对象的 Python 的一切,如果你不知道魔法方法,说明你还没能意识到面向对象的 Python 的强大。
魔法方法的“魔力”体现在它们总能够在适当的时候被自动调用。
魔法方法的第一个参数应为cls
(类方法) 或者self
(实例方法)。
cls
:代表一个类的名称self
:代表一个实例对象的名称__init__(self[, ...])
构造器,当一个实例被创建的时候调用的初始化方法例子:
class Rectangle:
def __init__(self, x, y):
self.x = x
self.y = y
def getPeri(self):
return (self.x + self.y) * 2
def getArea(self):
return self.x * self.y
rect = Rectangle(4, 5)
print(rect.getPeri()) # 18
print(rect.getArea()) # 20
__new__(cls[, ...])
在一个对象实例化的时候所调用的第一个方法,在调用__init__
初始化前,先调用__new__
。
__new__
至少要有一个参数cls
,代表要实例化的类,此参数在实例化时由 Python 解释器自动提供,后面的参数直接传递给__init__
。__new__
对当前类进行了实例化,并将实例返回,传给__init__
的self
。但是,执行了__new__
,并不一定会进入__init__
,只有__new__
返回了,当前类cls
的实例,当前类的__init__
才会进入。例子:
class A(object):
def __init__(self, value):
print("into A __init__")
self.value = value
def __new__(cls, *args, **kwargs):
print("into A __new__")
print(cls)
return object.__new__(cls)
class B(A):
def __init__(self, value):
print("into B __init__")
self.value = value
def __new__(cls, *args, **kwargs):
print("into B __new__")
print(cls)
return super().__new__(cls, *args, **kwargs)
b = B(10)
# 结果:
# into B __new__
#
# into A __new__
#
# into B __init__
class A(object):
def __init__(self, value):
print("into A __init__")
self.value = value
def __new__(cls, *args, **kwargs):
print("into A __new__")
print(cls)
return object.__new__(cls)
class B(A):
def __init__(self, value):
print("into B __init__")
self.value = value
def __new__(cls, *args, **kwargs):
print("into B __new__")
print(cls)
return super().__new__(A, *args, **kwargs) # 改动了cls变为A
b = B(10)
# 结果:
# into B __new__
#
# into A __new__
#
__new__
没有正确返回当前类cls
的实例,那__init__
是不会被调用的,即使是父类的实例也不行,将没有__init__
被调用。例子(利用__new__
实现单例模式)
class Earth:
pass
a = Earth()
print(id(a)) # 260728291456
b = Earth()
print(id(b)) # 260728291624
class Earth:
__instance = None # 定义一个类属性做判断
def __new__(cls):
if cls.__instance is None:
cls.__instance = object.__new__(cls)
return cls.__instance
else:
return cls.__instance
a = Earth()
print(id(a)) # 512320401648
b = Earth()
print(id(b)) # 512320401648
__new__
方法主要是当你继承一些不可变的 class 时(比如int, str, tuple
), 提供给你一个自定义这些类的实例化过程的途径。例子:
class CapStr(str):
def __new__(cls, string):
string = string.upper()
return str.__new__(cls, string)
a = CapStr("i love lsgogroup")
print(a) # I LOVE LSGOGROUP
__del__(self)
析构器,当一个对象将要被系统回收之时调用的方法。Python 采用自动引用计数(ARC)方式来回收对象所占用的空间,当程序中有一个变量引用该 Python 对象时,Python 会自动保证该对象引用计数为 1;当程序中有两个变量引用该 Python 对象时,Python 会自动保证该对象引用计数为 2,依此类推,如果一个对象的引用计数变成了 0,则说明程序中不再有变量引用该对象,表明程序不再需要该对象,因此 Python 就会回收该对象。
大部分时候,Python 的 ARC 都能准确、高效地回收系统中的每个对象。但如果系统中出现循环引用的情况,比如对象 a 持有一个实例变量引用对象 b,而对象 b 又持有一个实例变量引用对象 a,此时两个对象的引用计数都是 1,而实际上程序已经不再有变量引用它们,系统应该回收它们,此时 Python 的垃圾回收器就可能没那么快,要等专门的循环垃圾回收器(Cyclic Garbage Collector)来检测并回收这种引用循环。
例子:
class C(object):
def __init__(self):
print('into C __init__')
def __del__(self):
print('into C __del__')
c1 = C()
# into C __init__
c2 = c1
c3 = c2
del c3
del c2
del c1
# into C __del__
__str__(self)
:
__str__
%s
格式化的时候,触发__str__
str
强转数据类型的时候,触发__str__
__repr__(self)
:
repr
是str
的备胎__str__
的时候执行__str__
,没有实现__str__
的时候,执行__repr__
repr(obj)
内置函数对应的结果是__repr__
的返回值%r
格式化的时候 触发__repr__
例子:
class Cat:
"""定义一个猫类"""
def __init__(self, new_name, new_age):
"""在创建完对象之后 会自动调用, 它完成对象的初始化的功能"""
self.name = new_name
self.age = new_age
def __str__(self):
"""返回一个对象的描述信息"""
return "名字是:%s , 年龄是:%d" % (self.name, self.age)
def __repr__(self):
"""返回一个对象的描述信息"""
return "Cat:(%s,%d)" % (self.name, self.age)
def eat(self):
print("%s在吃鱼...." % self.name)
def drink(self):
print("%s在喝可乐..." % self.name)
def introduce(self):
print("名字是:%s, 年龄是:%d" % (self.name, self.age))
# 创建了一个对象
tom = Cat("汤姆", 30)
print(tom) # 名字是:汤姆 , 年龄是:30
print(str(tom)) # 名字是:汤姆 , 年龄是:30
print(repr(tom)) # Cat:(汤姆,30)
tom.eat() # 汤姆在吃鱼....
tom.introduce() # 名字是:汤姆, 年龄是:30
__str__(self)
的返回结果可读性强。也就是说,__str__
的意义是得到便于人们阅读的信息,就像下面的 ‘2019-10-11’ 一样。
__repr__(self)
的返回结果应更准确。怎么说,__repr__
存在的目的在于调试,便于开发者使用。
例子:
import datetime
today = datetime.date.today()
print(str(today)) # 2019-10-11
print(repr(today)) # datetime.date(2019, 10, 11)
print('%s' %today) # 2019-10-11
print('%r' %today) # datetime.date(2019, 10, 11)
类型工厂函数,指的是“不通过类而是通过函数来创建对象”。
例子:
class C:
pass
print(type(len)) #
print(type(dir)) #
print(type(int)) #
print(type(list)) #
print(type(tuple)) #
print(type(C)) #
print(int('123')) # 123
# 这个例子中list工厂函数把一个元祖对象加工成了一个列表对象。
print(list((1, 2, 3))) # [1, 2, 3]
__add__(self, other)
定义加法的行为:+
__sub__(self, other)
定义减法的行为:-
例子:
class MyClass:
def __init__(self, height, weight):
self.height = height
self.weight = weight
# 两个对象的长相加,宽不变.返回一个新的类
def __add__(self, others):
return MyClass(self.height + others.height, self.weight + others.weight)
# 两个对象的宽相减,长不变.返回一个新的类
def __sub__(self, others):
return MyClass(self.height - others.height, self.weight - others.weight)
# 说一下自己的参数
def intro(self):
print("高为", self.height, " 重为", self.weight)
def main():
a = MyClass(height=10, weight=5)
a.intro()
b = MyClass(height=20, weight=10)
b.intro()
c = b - a
c.intro()
d = a + b
d.intro()
if __name__ == '__main__':
main()
# 高为 10 重为 5
# 高为 20 重为 10
# 高为 10 重为 5
# 高为 30 重为 15
__mul__(self, other)
定义乘法的行为:*
__truediv__(self, other)
定义真除法的行为:/
__floordiv__(self, other)
定义整数除法的行为://
__mod__(self, other)
定义取模算法的行为:%
__divmod__(self, other)
定义当被 divmod()
调用时的行为divmod(a, b)
把除数和余数运算结果结合起来,返回一个包含商和余数的元组(a // b, a % b)
。例子:
print(divmod(7, 2)) # (3, 1)
print(divmod(8, 2)) # (4, 0)
__pow__(self, other[, module])
定义当被 power()
调用或 **
运算时的行为__lshift__(self, other)
定义按位左移位的行为:<<
__rshift__(self, other)
定义按位右移位的行为:>>
__and__(self, other)
定义按位与操作的行为:&
__xor__(self, other)
定义按位异或操作的行为:^
__or__(self, other)
定义按位或操作的行为:|
反运算魔方方法,与算术运算符保持一一对应,不同之处就是反运算的魔法方法多了一个“r”。当文件左操作不支持相应的操作时被调用。
__radd__(self, other)
定义加法的行为:+
__rsub__(self, other)
定义减法的行为:-
__rmul__(self, other)
定义乘法的行为:*
__rtruediv__(self, other)
定义真除法的行为:/
__rfloordiv__(self, other)
定义整数除法的行为://
__rmod__(self, other)
定义取模算法的行为:%
__rdivmod__(self, other)
定义当被 divmod() 调用时的行为__rpow__(self, other[, module])
定义当被 power() 调用或 **
运算时的行为__rlshift__(self, other)
定义按位左移位的行为:<<
__rrshift__(self, other)
定义按位右移位的行为:>>
__rand__(self, other)
定义按位与操作的行为:&
__rxor__(self, other)
定义按位异或操作的行为:^
__ror__(self, other)
定义按位或操作的行为:|
a + b
这里加数是a
,被加数是b
,因此是a
主动,反运算就是如果a
对象的__add__()
方法没有实现或者不支持相应的操作,那么 Python 就会调用b
的__radd__()
方法。
例子:
class Nint(int):
def __radd__(self, other):
return int.__sub__(other, self) # 注意 self 在后面
a = Nint(5)
b = Nint(3)
print(a + b) # 8
print(1 + b) # -2
__iadd__(self, other)
定义赋值加法的行为:+=
__isub__(self, other)
定义赋值减法的行为:-=
__imul__(self, other)
定义赋值乘法的行为:*=
__itruediv__(self, other)
定义赋值真除法的行为:/=
__ifloordiv__(self, other)
定义赋值整数除法的行为://=
__imod__(self, other)
定义赋值取模算法的行为:%=
__ipow__(self, other[, modulo])
定义赋值幂运算的行为:**=
__ilshift__(self, other)
定义赋值按位左移位的行为:<<=
__irshift__(self, other)
定义赋值按位右移位的行为:>>=
__iand__(self, other)
定义赋值按位与操作的行为:&=
__ixor__(self, other)
定义赋值按位异或操作的行为:^=
__ior__(self, other)
定义赋值按位或操作的行为:|=
__neg__(self)
定义正号的行为:+x
__pos__(self)
定义负号的行为:-x
__abs__(self)
定义当被abs()
调用时的行为__invert__(self)
定义按位求反的行为:~x
__getattr__(self, name)
: 定义当用户试图获取一个不存在的属性时的行为。__getattribute__(self, name)
:定义当该类的属性被访问时的行为(先调用该方法,查看是否存在该属性,若不存在,接着去调用__getattr__
)。__setattr__(self, name, value)
:定义当一个属性被设置时的行为。__delattr__(self, name)
:定义当一个属性被删除时的行为。例子:
class C:
def __getattribute__(self, item):
print('__getattribute__')
return super().__getattribute__(item)
def __getattr__(self, item):
print('__getattr__')
def __setattr__(self, key, value):
print('__setattr__')
super().__setattr__(key, value)
def __delattr__(self, item):
print('__delattr__')
super().__delattr__(item)
c = C()
c.x
# __getattribute__
# __getattr__
c.x = 1
# __setattr__
del c.x
# __delattr__
描述符就是将某种特殊类型的类的实例指派给另一个类的属性。
__get__(self, instance, owner)
用于访问属性,它返回属性的值。__set__(self, instance, value)
将在属性分配操作中调用,不返回任何内容。__del__(self, instance)
控制删除操作,不返回任何内容。例子:
class MyDecriptor:
def __get__(self, instance, owner):
print('__get__', self, instance, owner)
def __set__(self, instance, value):
print('__set__', self, instance, value)
def __delete__(self, instance):
print('__delete__', self, instance)
class Test:
x = MyDecriptor()
t = Test()
t.x
# __get__ <__main__.MyDecriptor object at 0x000000CEAAEB6B00> <__main__.Test object at 0x000000CEABDC0898>
t.x = 'x-man'
# __set__ <__main__.MyDecriptor object at 0x00000023687C6B00> <__main__.Test object at 0x00000023696B0940> x-man
del t.x
# __delete__ <__main__.MyDecriptor object at 0x000000EC9B160A90> <__main__.Test object at 0x000000EC9B160B38>
协议(Protocols)与其它编程语言中的接口很相似,它规定你哪些方法必须要定义。然而,在 Python 中的协议就显得不那么正式。事实上,在 Python 中,协议更像是一种指南。
容器类型的协议
__len__()
和__getitem__()
方法。__len__()
和__getitem__()
方法,你还需要定义__setitem__()
和__delitem__()
两个方法。例子(编写一个不可改变的自定义列表,要求记录列表中每个元素被访问的次数)
class CountList:
def __init__(self, *args):
self.values = [x for x in args]
self.count = {
}.fromkeys(range(len(self.values)), 0)
def __len__(self):
return len(self.values)
def __getitem__(self, item):
self.count[item] += 1
return self.values[item]
c1 = CountList(1, 3, 5, 7, 9)
c2 = CountList(2, 4, 6, 8, 10)
print(c1[1]) # 3
print(c2[2]) # 6
print(c1[1] + c2[1]) # 7
print(c1.count)
# {0: 0, 1: 2, 2: 0, 3: 0, 4: 0}
print(c2.count)
# {0: 0, 1: 1, 2: 1, 3: 0, 4: 0}
__len__(self)
定义当被len()
调用时的行为(返回容器中元素的个数)。__getitem__(self, key)
定义获取容器中元素的行为,相当于self[key]
。__setitem__(self, key, value)
定义设置容器中指定元素的行为,相当于self[key] = value
。__delitem__(self, key)
定义删除容器中指定元素的行为,相当于del self[key]
。例子(写一个可改变的自定义列表,要求记录列表中每个元素被访问的次数)
class CountList:
def __init__(self, *args):
self.values = [x for x in args]
self.count = {
}.fromkeys(range(len(self.values)), 0)
def __len__(self):
return len(self.values)
def __getitem__(self, item):
self.count[item] += 1
return self.values[item]
def __setitem__(self, key, value):
self.values[key] = value
def __delitem__(self, key):
del self.values[key]
for i in range(0, len(self.values)):
if i >= key:
self.count[i] = self.count[i + 1]
self.count.pop(len(self.values))
c1 = CountList(1, 3, 5, 7, 9)
c2 = CountList(2, 4, 6, 8, 10)
print(c1[1]) # 3
print(c2[2]) # 6
c2[2] = 12
print(c1[1] + c2[2]) # 15
print(c1.count)
# {0: 0, 1: 2, 2: 0, 3: 0, 4: 0}
print(c2.count)
# {0: 0, 1: 0, 2: 2, 3: 0, 4: 0}
del c1[1]
print(c1.count)
# {0: 0, 1: 0, 2: 0, 3: 0}
例子:
links = {
'B': '百度', 'A': '阿里', 'T': '腾讯'}
for each in links:
print('%s -> %s' % (each, links[each]))
'''
B -> 百度
A -> 阿里
T -> 腾讯
'''
for each in iter(links):
print('%s -> %s' % (each, links[each]))
iter()
和 next()
。iter(object)
函数用来生成迭代器。next(iterator[, default])
返回迭代器的下一个项目。iterator
– 可迭代对象default
– 可选,用于设置在没有下一个元素时返回该默认值,如果不设置,又没有下一个元素则会触发 StopIteration
异常。例子:
links = {
'B': '百度', 'A': '阿里', 'T': '腾讯'}
it = iter(links)
while True:
try:
each = next(it)
except StopIteration:
break
print(each)
# B
# A
# T
it = iter(links)
print(next(it)) # B
print(next(it)) # A
print(next(it)) # T
print(next(it)) # StopIteration
把一个类作为一个迭代器使用需要在类中实现两个魔法方法 __iter__()
与 __next__()
。
__iter__(self)
定义当迭代容器中的元素的行为,返回一个特殊的迭代器对象, 这个迭代器对象实现了 __next__()
方法并通过 StopIteration
异常标识迭代的完成。__next__()
返回下一个迭代器对象。StopIteration
异常用于标识迭代的完成,防止出现无限循环的情况,在 __next__()
方法中我们可以设置在完成指定循环次数后触发 StopIteration
异常来结束迭代。例子:
class Fibs:
def __init__(self, n=10):
self.a = 0
self.b = 1
self.n = n
def __iter__(self):
return self
def __next__(self):
self.a, self.b = self.b, self.a + self.b
if self.a > self.n:
raise StopIteration
return self.a
fibs = Fibs(100)
for each in fibs:
print(each, end=' ')
# 1 1 2 3 5 8 13 21 34 55 89
yield
的函数被称为生成器(generator)。yield
时函数会暂停并保存当前所有的运行信息,返回 yield
的值, 并在下一次执行 next()
方法时从当前位置继续运行。例子:
def myGen():
print('生成器执行!')
yield 1
yield 2
myG = myGen()
for each in myG:
print(each)
'''
生成器执行!
1
2
'''
yG = myGen()
print(next(myG))
# 生成器执行!
# 1
print(next(myG)) # 2
print(next(myG)) # StopIteration
例子(用生成器实现斐波那契数列)
def libs(n):
a = 0
b = 1
while True:
a, b = b, a + b
if a > n:
return
yield a
for each in libs(100):
print(each, end=' ')
# 1 1 2 3 5 8 13 21 34 55 89