Given an integer n, return a list of all simplified fractions between 0 and 1 (exclusive) such that the denominator is less-than-or-equal-to n. The fractions can be in any order.
Example 1:
Input: n = 2
Output: ["1/2"]
Explanation: "1/2" is the only unique fraction with a denominator less-than-or-equal-to 2.
Example 2:
Input: n = 3
Output: ["1/2","1/3","2/3"]
Example 3:
Input: n = 4
Output: ["1/2","1/3","1/4","2/3","3/4"]
Explanation: "2/4" is not a simplified fraction because it can be simplified to "1/2".
Example 4:
Input: n = 1
Output: []
Constraints:
题目的意思是:给定一个数n,求出其简化的分数形式,其中分母小于等于n。思路也很简单,双循环,其中一个循环为分母,另一个循环为分子,由于需要简化形式,所以需要求一下公约数,然后把分子分母除以公约数变成字符串就行了。最后去重一下就行了。
class Solution:
def common_factor(self,m,n):
if(n==0):
return m
return self.common_factor(n,m%n)
def simplifiedFractions(self, n: int) -> List[str]:
res=[]
for i in range(1,n+1):
for j in range(1,i):
fac=self.common_factor(i,j)
res.append(str(j//fac)+'/'+str(i//fac))
return list(set(res))
梳理使用Python实现求两数最大公约数(四种方法)