莫烦python视频学习笔记 视频链接https://www.bilibili.com/video/BV1Vx411j7kT?from=search&seid=3065687802317837578
import torch
from torch.autograd import Variable
import matplotlib.pyplot as plt
import os
os.environ["KMP_DUPLICATE_LIB_OK"] = "TRUE"
# import os 这里是为了防止报错加的
torch.manual_seed(1) # reproducible
# fake data
x = torch.unsqueeze(torch.linspace(-1, 1, 100), dim=1)
y = x.pow(2) + 0.2*torch.rand(x.size())
x, y = Variable(x, requires_grad=False), Variable(y, requires_grad=False)
# 神经网络的保存
def save():
# save net1
net1 = torch.nn.Sequential( # Sequential的功能在这个括号里逐层搭建神经层
torch.nn.Linear(1, 10),
torch.nn.ReLU(), # 激励函数
torch.nn.Linear(10, 1)
)
optimizer = torch.optim.SGD(net1.parameters(), lr=0.25) # 传入参数,lr是学习效率
loss_func = torch.nn.MSELoss()
for t in range(100):
prediction = net1(x)
loss = loss_func(prediction, y) # 预测值与真实值对比
optimizer.zero_grad() # 将梯度降为零
loss.backward()
optimizer.step() # 以学习效率0.5优化梯度
# plot result
plt.figure(1, figsize=(10, 3))
plt.subplot(131)
plt.title('Net1')
plt.scatter(x.data.numpy(), y.data.numpy())
plt.plot(x.data.numpy(), prediction.data.numpy(), 'r-', lw=5)
torch.save(net1, 'net.pkl') # entire all
torch.save(net1.state_dict(), 'net_params.pkl') # 保存参数
# 神经网络的提取
# method 1
def restore_net():
net2 = torch.load('net.pkl')
prediction = net2(x)
# plot result
plt.figure(1, figsize=(10, 3))
plt.subplot(132)
plt.title('Net2')
plt.scatter(x.data.numpy(), y.data.numpy())
plt.plot(x.data.numpy(), prediction.data.numpy(), 'r-', lw=5)
# method 2
def restore_params():
net3 = torch.nn.Sequential(
torch.nn.Linear(1, 10),
torch.nn.ReLU(),
torch.nn.Linear(10, 1)
)
net3.load_state_dict(torch.load('net_params.pkl'))
prediction = net3(x)
# plot result
plt.figure(1, figsize=(10, 3))
plt.subplot(133)
plt.title('Net3')
plt.scatter(x.data.numpy(), y.data.numpy())
plt.plot(x.data.numpy(), prediction.data.numpy(), 'r-', lw=5)
plt.show()
# save net1
save()
# restore entire net
restore_net()
# restore params
restore_params()
一开始将训练的学习效率设置为0.5,即:
optimizer = torch.optim.SGD(net1.parameters(), lr=0.5) # 传入参数,lr是学习效率
结果图像如下,很明显学习效果是失败的。