- 高斯混合模型(Gaussian Mixture Model, GMM)
不想秃头的程序
神经网络语音识别人工智能深度学习网络
高斯混合模型(GaussianMixtureModel,GMM)是一种概率模型,用于表示数据点由多个高斯分布(GaussianDistribution)混合生成的过程。它广泛应用于聚类分析、密度估计、图像分割、语音识别等领域,尤其适合处理非球形簇或多模态数据。以下是GMM的详细介绍:一、核心思想GMM假设数据是由多个高斯分布混合生成的,每个高斯分布代表一个簇(Cluster),并引入隐变量(Lat
- 数据与ChatBI
ChatBI的核心是让用户用自然语言(如“帮我看看这周的销售额走势”)直接获取数据分析结果,无需懂SQL或技术细节。整个过程就像AI“听懂”你的话、理解需求、生成查询、验证执行、并可视化展示结果。首先,ChatBI的系统架构图展示了整个流程的关键步骤。它从用户输入开始,经过多个AI模块处理,最终输出交互式报表。现在来一步步解析ChatBI的工作流程。1.语音/文字输入——解放双手的起点这是什么?一
- Python 使用总结之:Python 文本转语音引擎 - pyttsx3 完全指南
wangjinjin180
python开发语言
文本转语音(TTS,Text-to-Speech)技术已经广泛应用于语音助手、智能硬件、教育软件等多个领域。Python提供了多个库来实现TTS,其中pyttsx3是一个非常常用的跨平台TTS引擎。本文将详细介绍如何使用pyttsx3实现文本转语音的功能。一、安装pyttsx3库首先,你需要安装pyttsx3库。你可以通过以下命令来安装:pipinstallpyttsx3pyttsx3是一个离线库
- 深度学习详解:通过案例了解机器学习基础
beist
深度学习机器学习人工智能
引言机器学习(MachineLearning,ML)和深度学习(DeepLearning,DL)是现代人工智能领域中的两个重要概念。通过让机器具备学习的能力,机器可以从数据中自动找到函数,并应用于各种任务,如语音识别、图像识别和游戏对战等。在这篇笔记中,我们将通过一个简单的案例,逐步了解机器学习的基础知识。1.1机器学习案例学习1.1.1回归问题与分类问题在机器学习中,根据所要解决的问题类型,任务
- 基于 52 单片机电子智能手环导盲杖
在《单片机技术及应用》课程的学习过程中,我深入研究了基于52单片机的电子智能手环导盲杖的设计与开发,在此与大家分享这一有趣且实用的项目。一、系统整体架构该电子智能手环导盲杖系统主要由智能手环和导盲杖两部分组成,二者通过蓝牙模块进行通信。智能手环佩戴在使用者手腕上,用于感知使用者的运动姿态并提供心率监测等功能;导盲杖则负责探测周围环境信息并为使用者提供语音导航和位置追踪等服务。二、智能手环设计智能手
- 对话云蝠智能:大模型如何让企业呼叫系统从 “成本中心” 变身 “价值枢纽”?
MARS_AI_
人工智能自然语言处理信息与通信交互
在人工智能重塑企业服务的浪潮中,云蝠智能(南京星蝠科技有限公司旗下品牌)以深厚的技术积累和行业实践,逐步成长为国内智能外呼领域的标杆企业。其发展路径揭示了技术自主创新与场景深度结合的必然性。一、技术架构:全栈自研奠定领先基础云蝠智能的核心竞争力源于其全链路自研技术体系。该架构覆盖语音识别(ASR)、自然语言处理(NLP)、语音合成(TTS)及软交换六大层级,实现从基础设施到操作层的闭环设计。这一分
- 【软件系统架构】系列四:嵌入式软件-NPU(神经网络处理器)系统及模板
目录一、什么是NPU?二、NPU与CPU/GPU/DSP对比三、NPU的工作原理核心结构:数据流架构:四、NPU芯片架构(简化图)五、NPU的优势六、NPU应用场景视觉识别语音识别自动驾驶智能监控AIoT设备七、主流NPU芯片/架构实例八、开发者工具生态(通用)九、NPU集成建议(嵌入式开发场景)十、NPU芯片选型对比+模型部署流程+嵌入式工程模板1.主流NPU芯片选型对比表2.模型部署流程(以T
- DIY语音控制车辆玩具全攻略:从硬件组装到功能实现
欧阳天羲
硬件工程语音识别自动驾驶
一、设备清单与成本估算1.1硬件组件列表组件名称价格(元)备注ArduinoUno兼容板7.04控制核心,支持多传感器接入DFRobot离线语音识别模块105支持10条自定义语音指令L298N电机驱动板5双路电机驱动,带散热片直流减速电机×2(JGB37-520)3012V供电,150转/分钟SG90微型舵机5控制前轮转向HC-SR04超声波传感器2.45测距范围2-400cm18650锂电池(3
- GRU与Transformer结合:新一代序列模型
AI大模型应用工坊
grutransformer深度学习ai
GRU与Transformer结合:新一代序列模型关键词:GRU、Transformer、序列模型、结合、深度学习摘要:本文深入探讨了GRU与Transformer结合所形成的新一代序列模型。先介绍了GRU和Transformer各自的核心概念及工作原理,然后阐述了二者结合的原因、方式和优势。通过代码实际案例展示了如何搭建结合的模型,还探讨了其在自然语言处理、语音识别等领域的实际应用场景。最后对未
- 数字人分身系统源码搭建定制化开发,支持OEM
在人工智能技术蓬勃发展的今天,数字人分身系统凭借其独特的交互性和广泛的应用场景,成为了众多企业和开发者关注的焦点。从虚拟主播、智能客服到数字员工,数字人分身系统正逐渐渗透到各个领域。本文将详细阐述数字人分身系统源码搭建与定制化开发的全流程,为技术爱好者和企业开发者提供全面的技术参考。一、数字人分身系统概述数字人分身系统是一个综合性的技术解决方案,它融合了计算机图形学、人工智能、语音识别与合成、自然
- 【造工具-2】用SenceVoice,实现本地的语音转文本小工具
zhulangfly
AIAISTTASR
说到语音转文本,有两种说法,自动语音识别(ASR,AutomaticSpeechRecognition)和语音转文本(STT,Speech-to-Text),本质上都是通过算法将语音信号转化为可处理的文本形式的技术,两者的核心功能和应用目标完全一致。如果有区别的话,ASR更常见于学术研究和技术文档中,STT则更多应用于产品功能描述。ASR常与其他模块(如VAD、说话人分离)并列描述,体现其在技
- 2025年6月21和22日复习和预习(python)
子豪-中国机器人
人工智能
一、作业内容(一)知识点回顾用户输入处理使用input()函数获取用户输入的字符串,并存储到变量中。条件判断语句if-elif-else结构:根据不同条件执行相应代码块,适用于多分支判断。语音合成技术导入pyttsx3库实现文本转语音功能,通过pyttsx3.speak()方法将文本转换为语音输出。(二)练习题基础功能实现编写程序,创建一个简易聊天机器人,能够根据用户输入的问题给出预设回答。实现至
- 讯飞星火(iFlytek Spark):科大讯飞打造的国产AI大模型平台
明似水
AI人工智能
1.产品概述讯飞星火(iFlytekSpark)是科大讯飞自主研发的认知大模型,定位于通用人工智能(AGI)平台,集成了文本生成、语言理解、知识问答、逻辑推理、数学计算、代码生成和多模态交互等核心能力。作为国内首批基于全国产算力平台训练的大模型,讯飞星火在中文理解、语音交互、数学推理等方面表现突出,并持续对标国际顶尖模型(如GPT-4、Gemini)。核心优势全国产化:基于华为昇腾AI芯片和“飞星
- 点点(小红书AI搜索):生活场景的智能搜索助手
明似水
AI人工智能生活
1.产品概述点点是小红书于2024年12月正式推出的AI搜索助手,由上海生动诗章科技有限公司开发,定位为生活场景搜索工具,聚焦交通、美食、旅游、购物等日常需求,旨在通过即时信息和真实用户分享帮助用户“精准避坑”。核心特点✅生活场景优化:专注于吃喝玩乐、出行攻略、健康咨询等实用信息。✅多模态交互:支持文字、语音、图片输入,提升搜索便捷性。✅UGC(用户生成内容)整合:结合小红书海量真实笔记,提供更可
- 华为Pura 70怎么语音翻译?语音翻译详解
C_19870
华为经验分享
在智能手机功能日益丰富的今天,语音翻译已成为许多手机用户的重要需求之一。华为Pura70,作为华为系列中的一款高端机型,其内置的语音翻译功能在准确性和便捷性上都表现出色。本文将详细介绍华为Pura70在语音翻译方面的表现、操作步骤,并探讨其他可实现语音翻译操作的软件,特别是“同声传译王”。华为Pura70手机在语音翻译时的表现华为Pura70内置的语音翻译功能凭借其先进的语音识别和翻译技术,为用户
- AR眼镜与3D建模社区建设
大霸王龙
系统分析业务ar3d
AR眼镜与3D建模社区建设:结构化分析报告1.技术架构与系统集成1.1AR眼镜核心功能实时空间叠加:通过透明显示屏将虚拟模型与现实环境无缝融合,支持多层叠加(如设计模型、标注信息、参考线等)。手势与语音交互:利用眼动追踪、手势识别和语音命令实现沉浸式操作,例如旋转模型、调整参数无需触控设备。6DoF定位精度:支持六自由度定位,确保虚拟对象在三维空间中的精准放置与移动,适用于复杂建模场景。1.2与3
- RNN、LSTM、GRU详解
昔颜1121
人工智能rnnpython
RNN、LSTM、GRU详解在深度学习领域,序列数据(如语音识别、机器翻译、文本生成等)广泛应用于自然语言处理(NLP)、时间序列预测、语音和视频处理等任务中。针对序列数据,循环神经网络(RNN,RecurrentNeuralNetwork)及其改进版本——长短时记忆网络(LSTM,LongShort-TermMemory)和门控循环单元(GRU,GatedRecurrentUnit)成为处理时序
- 利用FunASR搭建自己的语音转文本服务器(有手就行)
提示:利用阿里巴巴开源的FunASR工具包,搭建语音转文本服务,通过网页实现免费的语音转文本服务。目录前言一、FunASR是什么?二、服务搭建2.1服务器准备2.2安装docker2.3下载并启动镜像2.4启动ASR服务三、下载客户端开始工作总结前言语音转文本是我们经常面对的日常任务,都=是智能客服、会议记录、实时字幕等场景核心的功能。然而,传统语音识别系统往往面临高延迟、低准确率或复杂部署的挑战
- WebRTC 语音激活检测(VAD)算法
u013250861
Audiowebrtc算法语音识别
语音激活检测最早应用于电话传输和检测系统当中,用于通信信道的时间分配,提高传输线路的利用效率。激活检测属于语音处理系统的前端操作,在语音检测领域意义重大。但是目前的语音激活检测,尤其是检测人声开始和结束的端点始终是属于技术难点,各家公司始终处于能判断,但是不敢保证判别准确性的阶段。通常搭建机器人聊天系统主要包括以下三个方面:语音转文字(ASR/STT)语义内容(NLU/NLP)文字转语音(TTS)
- 【使用Unimrcp和Funasr构建呼叫中心语音识别服务端】
cc_ai_cn
呼叫中心语音识别语音识别人工智能
使用Unimrcp和Funasr构建呼叫中心语音识别服务端1.编译及运行unimrcp2.新增funasr-recog,支持funasr识别3.启动unimrcp4.启动funasr5.freeswitch呼叫测试1.编译及运行unimrcp此次使用的是unimrcp1.6版本,先下载unimrcp-deps-1.6.0以及unimrcp-1.6.0进行构建,此处不过多赘述。2.新增funasr-
- 第9章:听声辨味的玄机——语音识别如何破解厨房噪音难题
第9章:听声辨味的玄机——语音识别如何破解厨房噪音难题声学特征解析、深度降噪与工业部署全链路解密工业级挑战场景:在上海四季酒店中央厨房的热浪区域(平均声压92dB),行政主厨需同时管理六口燃气灶、两台对流烤箱和三台洗碗机。当他在油烟机轰鸣中喊出"三号灶文火收汁"时,噪音包含:炒锅爆炒声(65-85dB@4-8kHz)高压蒸汽喷射(75-90dB@2-4kHz)金属撞击噪声(80-95dB@1-8k
- AI免费工具:promptpilot、今天学点啥、中英文翻译
loong_XL
大模型AIaiai应用
promptpilot激发模型潜能,轻松优化Prompthttps://promptpilot.volcengine.com/startup今天学点啥https://metaso.cn/study能生成网页和语音播报中英文翻译沉浸式翻译,浏览器插件,ai翻译
- 世界因你不同:李开复自传
浦东新村轱天乐
读书笔记职场发展
读完后闭上眼睛想一想,为什么李开复值得学习?第一,他工作能力很强。他并不只是在名校、名企呆过,而是最后都做到了很高的位置。11岁从台湾去美国读书,博士在CMU,毕业后先后在苹果、微软、谷歌工作过。CMU读博期间开发了基于统计方法的语音识别技术,拿到了CMU终身教职后,放弃这一职位加入了苹果。微软时期牵头成立了微软中国研究院(后改名微软亚洲研究院),这个传奇的地方在深度学习大火之后,诞生出了很多牛人
- 开发者注意:鸿蒙APP语音识别常见问题全解析(含可跑Demo)
harmonyos
摘要在鸿蒙(HarmonyOS)应用开发中,语音识别是很多智能功能的核心入口,比如语音助手、语音输入、语音搜索等。但不少开发者会遇到"语音识别无法使用"的问题:调用没反应、识别不返回、报权限错误……这篇文章将从权限配置、API调用、设备支持、网络状态等多个角度入手,结合实际代码和典型使用场景,帮你一条一条查清楚到底问题出在哪。引言随着语音交互逐渐成为主流,鸿蒙系统也提供了对ASR(Automati
- 开源(离线)中文语音识别ASR(语音转文本)工具整理
切糕师学AI
#语音识别asr与语音合成STT语音识别人工智能深度学习
开源(离线)中文语音识别ASR(语音转文本)工具整理目录文章目录目录@[toc]openai的开源工具:whisperwhisper介绍引用ASRT语音识别项目ASRT介绍引用微软语音服务(付费)微软语音服务介绍实时语音转文本批量转录自定义语音引用PaddleSpeechPaddleSpeech介绍引用openai的开源工具:whisperwhisper介绍OpenAI在2022年9月21日开源了
- 微软ASR与开源模型分析
老兵发新帖
microsoft开源
一、微软ASR核心能力1.支持场景场景功能实时语音转文本低延迟流式识别(会议字幕/直播转录)音频文件转文本支持多种格式(WAV/MP3等),批量处理长音频定制化模型针对特定行业术语(医疗/金融)训练专属模型多语言混合识别中英文混合、方言识别(如中文普通话+粤语)说话人分离区分不同发言人(声纹识别)2.关键性能指标识别准确率:中文普通话>95%(安静环境)英文>96%(MicrosoftResear
- 世界顶尖大语言模型(按公司分类)
nbspzs
ai语言模型
截至2025年中(6月),全球顶尖的大语言模型(LLM)主要集中在以下几家公司和项目中。这些模型在语言理解、推理、代码生成、多模态能力等方面处于世界领先地位。世界顶尖大语言模型(按公司分类)OpenAI(美国)模型名称发布时间特点GPT-4o2024-05多模态旗舰模型,支持文本、语音、图像输入,响应速度极快,免费用户可用GPT-4-turbo2023-11提供更高性价比的GPT-4变体,拥有12
- [AI风堇]基于ChatGPT3.5+科大讯飞录音转文字API+GPT-SOVITS的模拟情感实时语音对话项目
nightunderblackcat
有趣的项目gpt-3gpt人工智能
[AI风堇]趁着有空做出来的一个小项目,灵感来源于B站,但博主未提供代码,依据简介和标题进行了一个复刻,以下是视频展示效果(已同步更新至B站),要是大家觉得好玩后期我出个教程
- HarmonyOS SDK:Image Classification 能力进行图片识别
在鸿蒙应用开发中,HarmonyOSSDK提供了丰富的AI能力接口,开发者可以快速集成语音识别、图像识别、自然语言处理等智能功能到自己的应用中。作为一名鸿蒙开发者,在实际项目中我深刻体会到这些AI能力对提升用户体验和产品智能化水平的重要性。以图像识别为例,借助HarmonyOSSDK中的ImageClassificationAPI,我们可以轻松实现图片内容的自动识别与分类。通过调用系统提供的AI引
- 《Whisper模型版本及下载链接》
空云风语
人工智能深度学习神经网络whisper
Whisper模型版本及下载链接Whisper是OpenAI开发的语音识别模型,以下按模型规模从小到大排列,包含不同语言版本及通用版本:1.Tiny系列(轻量级)tiny.en.pt(英文专用):https://openaipublic.azureedge.net/main/whisper/models/d3dd57d32accea0b295c96e26691aa14d8822fac7d9d27d
- java线程Thread和Runnable区别和联系
zx_code
javajvmthread多线程Runnable
我们都晓得java实现线程2种方式,一个是继承Thread,另一个是实现Runnable。
模拟窗口买票,第一例子继承thread,代码如下
package thread;
public class ThreadTest {
public static void main(String[] args) {
Thread1 t1 = new Thread1(
- 【转】JSON与XML的区别比较
丁_新
jsonxml
1.定义介绍
(1).XML定义
扩展标记语言 (Extensible Markup Language, XML) ,用于标记电子文件使其具有结构性的标记语言,可以用来标记数据、定义数据类型,是一种允许用户对自己的标记语言进行定义的源语言。 XML使用DTD(document type definition)文档类型定义来组织数据;格式统一,跨平台和语言,早已成为业界公认的标准。
XML是标
- c++ 实现五种基础的排序算法
CrazyMizzz
C++c算法
#include<iostream>
using namespace std;
//辅助函数,交换两数之值
template<class T>
void mySwap(T &x, T &y){
T temp = x;
x = y;
y = temp;
}
const int size = 10;
//一、用直接插入排
- 我的软件
麦田的设计者
我的软件音乐类娱乐放松
这是我写的一款app软件,耗时三个月,是一个根据央视节目开门大吉改变的,提供音调,猜歌曲名。1、手机拥有者在android手机市场下载本APP,同意权限,安装到手机上。2、游客初次进入时会有引导页面提醒用户注册。(同时软件自动播放背景音乐)。3、用户登录到主页后,会有五个模块。a、点击不胫而走,用户得到开门大吉首页部分新闻,点击进入有新闻详情。b、
- linux awk命令详解
被触发
linux awk
awk是行处理器: 相比较屏幕处理的优点,在处理庞大文件时不会出现内存溢出或是处理缓慢的问题,通常用来格式化文本信息
awk处理过程: 依次对每一行进行处理,然后输出
awk命令形式:
awk [-F|-f|-v] ‘BEGIN{} //{command1; command2} END{}’ file
[-F|-f|-v]大参数,-F指定分隔符,-f调用脚本,-v定义变量 var=val
- 各种语言比较
_wy_
编程语言
Java Ruby PHP 擅长领域
- oracle 中数据类型为clob的编辑
知了ing
oracle clob
public void updateKpiStatus(String kpiStatus,String taskId){
Connection dbc=null;
Statement stmt=null;
PreparedStatement ps=null;
try {
dbc = new DBConn().getNewConnection();
//stmt = db
- 分布式服务框架 Zookeeper -- 管理分布式环境中的数据
矮蛋蛋
zookeeper
原文地址:
http://www.ibm.com/developerworks/cn/opensource/os-cn-zookeeper/
安装和配置详解
本文介绍的 Zookeeper 是以 3.2.2 这个稳定版本为基础,最新的版本可以通过官网 http://hadoop.apache.org/zookeeper/来获取,Zookeeper 的安装非常简单,下面将从单机模式和集群模式两
- tomcat数据源
alafqq
tomcat
数据库
JNDI(Java Naming and Directory Interface,Java命名和目录接口)是一组在Java应用中访问命名和目录服务的API。
没有使用JNDI时我用要这样连接数据库:
03. Class.forName("com.mysql.jdbc.Driver");
04. conn
- 遍历的方法
百合不是茶
遍历
遍历
在java的泛
- linux查看硬件信息的命令
bijian1013
linux
linux查看硬件信息的命令
一.查看CPU:
cat /proc/cpuinfo
二.查看内存:
free
三.查看硬盘:
df
linux下查看硬件信息
1、lspci 列出所有PCI 设备;
lspci - list all PCI devices:列出机器中的PCI设备(声卡、显卡、Modem、网卡、USB、主板集成设备也能
- java常见的ClassNotFoundException
bijian1013
java
1.java.lang.ClassNotFoundException: org.apache.commons.logging.LogFactory 添加包common-logging.jar2.java.lang.ClassNotFoundException: javax.transaction.Synchronization
- 【Gson五】日期对象的序列化和反序列化
bit1129
反序列化
对日期类型的数据进行序列化和反序列化时,需要考虑如下问题:
1. 序列化时,Date对象序列化的字符串日期格式如何
2. 反序列化时,把日期字符串序列化为Date对象,也需要考虑日期格式问题
3. Date A -> str -> Date B,A和B对象是否equals
默认序列化和反序列化
import com
- 【Spark八十六】Spark Streaming之DStream vs. InputDStream
bit1129
Stream
1. DStream的类说明文档:
/**
* A Discretized Stream (DStream), the basic abstraction in Spark Streaming, is a continuous
* sequence of RDDs (of the same type) representing a continuous st
- 通过nginx获取header信息
ronin47
nginx header
1. 提取整个的Cookies内容到一个变量,然后可以在需要时引用,比如记录到日志里面,
if ( $http_cookie ~* "(.*)$") {
set $all_cookie $1;
}
变量$all_cookie就获得了cookie的值,可以用于运算了
- java-65.输入数字n,按顺序输出从1最大的n位10进制数。比如输入3,则输出1、2、3一直到最大的3位数即999
bylijinnan
java
参考了网上的http://blog.csdn.net/peasking_dd/article/details/6342984
写了个java版的:
public class Print_1_To_NDigit {
/**
* Q65.输入数字n,按顺序输出从1最大的n位10进制数。比如输入3,则输出1、2、3一直到最大的3位数即999
* 1.使用字符串
- Netty源码学习-ReplayingDecoder
bylijinnan
javanetty
ReplayingDecoder是FrameDecoder的子类,不熟悉FrameDecoder的,可以先看看
http://bylijinnan.iteye.com/blog/1982618
API说,ReplayingDecoder简化了操作,比如:
FrameDecoder在decode时,需要判断数据是否接收完全:
public class IntegerH
- js特殊字符过滤
cngolon
js特殊字符js特殊字符过滤
1.js中用正则表达式 过滤特殊字符, 校验所有输入域是否含有特殊符号function stripscript(s) { var pattern = new RegExp("[`~!@#$^&*()=|{}':;',\\[\\].<>/?~!@#¥……&*()——|{}【】‘;:”“'。,、?]"
- hibernate使用sql查询
ctrain
Hibernate
import java.util.Iterator;
import java.util.List;
import java.util.Map;
import org.hibernate.Hibernate;
import org.hibernate.SQLQuery;
import org.hibernate.Session;
import org.hibernate.Transa
- linux shell脚本中切换用户执行命令方法
daizj
linuxshell命令切换用户
经常在写shell脚本时,会碰到要以另外一个用户来执行相关命令,其方法简单记下:
1、执行单个命令:su - user -c "command"
如:下面命令是以test用户在/data目录下创建test123目录
[root@slave19 /data]# su - test -c "mkdir /data/test123" 
- 好的代码里只要一个 return 语句
dcj3sjt126com
return
别再这样写了:public boolean foo() { if (true) { return true; } else { return false;
- Android动画效果学习
dcj3sjt126com
android
1、透明动画效果
方法一:代码实现
public View onCreateView(LayoutInflater inflater, ViewGroup container, Bundle savedInstanceState)
{
View rootView = inflater.inflate(R.layout.fragment_main, container, fals
- linux复习笔记之bash shell (4)管道命令
eksliang
linux管道命令汇总linux管道命令linux常用管道命令
转载请出自出处:
http://eksliang.iteye.com/blog/2105461
bash命令执行的完毕以后,通常这个命令都会有返回结果,怎么对这个返回的结果做一些操作呢?那就得用管道命令‘|’。
上面那段话,简单说了下管道命令的作用,那什么事管道命令呢?
答:非常的经典的一句话,记住了,何为管
- Android系统中自定义按键的短按、双击、长按事件
gqdy365
android
在项目中碰到这样的问题:
由于系统中的按键在底层做了重新定义或者新增了按键,此时需要在APP层对按键事件(keyevent)做分解处理,模拟Android系统做法,把keyevent分解成:
1、单击事件:就是普通key的单击;
2、双击事件:500ms内同一按键单击两次;
3、长按事件:同一按键长按超过1000ms(系统中长按事件为500ms);
4、组合按键:两个以上按键同时按住;
- asp.net获取站点根目录下子目录的名称
hvt
.netC#asp.nethovertreeWeb Forms
使用Visual Studio建立一个.aspx文件(Web Forms),例如hovertree.aspx,在页面上加入一个ListBox代码如下:
<asp:ListBox runat="server" ID="lbKeleyiFolder" />
那么在页面上显示根目录子文件夹的代码如下:
string[] m_sub
- Eclipse程序员要掌握的常用快捷键
justjavac
javaeclipse快捷键ide
判断一个人的编程水平,就看他用键盘多,还是鼠标多。用键盘一是为了输入代码(当然了,也包括注释),再有就是熟练使用快捷键。 曾有人在豆瓣评
《卓有成效的程序员》:“人有多大懒,才有多大闲”。之前我整理了一个
程序员图书列表,目的也就是通过读书,让程序员变懒。 写道 程序员作为特殊的群体,有的人可以这么懒,懒到事情都交给机器去做,而有的人又可
- c++编程随记
lx.asymmetric
C++笔记
为了字体更好看,改变了格式……
&&运算符:
#include<iostream>
using namespace std;
int main(){
int a=-1,b=4,k;
k=(++a<0)&&!(b--
- linux标准IO缓冲机制研究
音频数据
linux
一、什么是缓存I/O(Buffered I/O)缓存I/O又被称作标准I/O,大多数文件系统默认I/O操作都是缓存I/O。在Linux的缓存I/O机制中,操作系统会将I/O的数据缓存在文件系统的页缓存(page cache)中,也就是说,数据会先被拷贝到操作系统内核的缓冲区中,然后才会从操作系统内核的缓冲区拷贝到应用程序的地址空间。1.缓存I/O有以下优点:A.缓存I/O使用了操作系统内核缓冲区,
- 随想 生活
暗黑小菠萝
生活
其实账户之前就申请了,但是决定要自己更新一些东西看也是最近。从毕业到现在已经一年了。没有进步是假的,但是有多大的进步可能只有我自己知道。
毕业的时候班里12个女生,真正最后做到软件开发的只要两个包括我,PS:我不是说测试不好。当时因为考研完全放弃找工作,考研失败,我想这只是我的借口。那个时候才想到为什么大学的时候不能好好的学习技术,增强自己的实战能力,以至于后来找工作比较费劲。我
- 我认为POJO是一个错误的概念
windshome
javaPOJO编程J2EE设计
这篇内容其实没有经过太多的深思熟虑,只是个人一时的感觉。从个人风格上来讲,我倾向简单质朴的设计开发理念;从方法论上,我更加倾向自顶向下的设计;从做事情的目标上来看,我追求质量优先,更愿意使用较为保守和稳妥的理念和方法。
&