整体架构图
工具
Flink 1.11.2
Scala 2.11
Tableau 2020.2
一、模拟发送数据
新建一个类KafkaProducer用来模拟产生消费数据,代码如下:
package TopNitems
import java.text.SimpleDateFormat
import java.time.{LocalTime, ZonedDateTime}
import java.time.format.DateTimeFormatter
import java.util.{Date, Locale, Properties}
import scala.io.Source
import org.apache.kafka.clients.producer.{KafkaProducer, ProducerRecord}
import Array._
import scala.util.Random.shuffle
object KafkaProducers {
def main(args: Array[String]): Unit = {
SendtoKafka("test")
}
def SendtoKafka(topic:String): Unit = {
val pro=new Properties()
pro.put("bootstrap.servers", "192.168.226.10:9092")
pro.setProperty("key.serializer", "org.apache.kafka.common.serialization.StringSerializer")
pro.setProperty("value.serializer", "org.apache.kafka.common.serialization.StringSerializer")
val producer=new KafkaProducer[String,String](pro)
var member_id= range(1,10)
var goods=Array("Milk","Bread","Rice","Nodles","Cookies","Fish","Meat","Fruit","Drink","Books","Clothes","Toys")
//var ts=DateTimeFormatter.ofPattern("yyyy-MM-dd HH:mm:ss",Locale.CHINA).format( ZonedDateTime.now())
while (true) {
var ts=new SimpleDateFormat("yyyy-MM-dd HH:mm:ss").format(new Date())
var msg = shuffle(member_id.toList).head + "\t" + shuffle(goods.toList).head + "\t" + ts+"\t"+"\n"
print(msg)
var record = new ProducerRecord[String, String](topic, msg)
producer.send(record)
Thread.sleep(2000)
}
//val source=Source.fromFile("C:\\UserBehavior.csv")
//for (line<-source.getLines()){
// val record=new ProducerRecord[String,String](topic,line)
//print(ts)
producer.close()
}
}
1.启动ZooKeeper
./zkServer.sh start
.2.启动Kafka
./kafka-server-start.sh -daemon $KAFKA_HOME/config/server.properties
3.创建topic
./kafka-topics.sh --create --zookeeper 192.168.226.10:2181 --replication-factor 1 --partitions 1 --topic test
查看topic是否创建成功
./kafka-topics.sh --list --zookeeper 192.168.226.10:2181
4.在IDEA运行KafkaProducer,可以看到每隔2秒产生一个消费
启动监听
./kafka-console-consumer.sh --topic test --from-beginning --bootstrap-server 192.168.226.10:9092
测试成功,说明可以被消费
二、数据写入Clickhouse
Clickhouse可以直接作为Kafka的Consumer,这个是官网介绍,格式这里查看,但是直接消费,没有ETL过程,我们还是用flink来消费,方便其他处理。
Flink 在 1.11.0 版本对其 JDBC connector 进行了一次较大的重构,包的名字也不一样:
二者对 Flink 中以不同方式写入 ClickHouse Sink 的支持情况如下:
API名称 | flink-jdbc | flink-connector-jdbc |
---|---|---|
DataStream | 不支持 | 支持 |
Table API (Legecy) | 支持 | 不支持 |
Table API (DDL) | 不支持 | 不支持 |
本次使用flink 1.11.2版本,所以采用的方式为flink-connector-jdbc+DataStream的方式写入数据到ClickHouse
先添加依赖
org.apache.flink
flink-connector-jdbc_2.11
1.11.2
ru.yandex.clickhouse
clickhouse-jdbc
0.2.4
org.apache.flink
flink-table-planner-blink_${scala.binary.version}
${flink.version}
provided
org.apache.flink
flink-table-api-scala-bridge_${scala.binary.version}
${flink.version}
org.apache.flink
flink-table-common
${flink.version}
provided
代码如下,这里采用jdbc的方式写入,每5条批量写入一次
package TopNitems
import java.sql.PreparedStatement
import java.text.SimpleDateFormat
import java.util.{Date, Properties}
import org.apache.flink.api.common.serialization.SimpleStringSchema
import org.apache.flink.connector.jdbc.{JdbcConnectionOptions, JdbcExecutionOptions, JdbcSink, JdbcStatementBuilder}
import org.apache.flink.streaming.api.functions.timestamps.BoundedOutOfOrdernessTimestampExtractor
import org.apache.flink.streaming.api.{CheckpointingMode, TimeCharacteristic}
import org.apache.flink.streaming.api.scala.StreamExecutionEnvironment
import org.apache.flink.streaming.connectors.kafka.FlinkKafkaConsumer
import org.apache.flink.streaming.api.scala._
import org.apache.flink.streaming.api.windowing.time.Time
import org.apache.flink.table.api.bridge.scala.StreamTableEnvironment
import org.apache.flink.api.scala._
import org.apache.flink.table.descriptors.Kafka
//当前版本的 flink-connector-jdbc,使用 Scala API 调用 JdbcSink 时会出现 lambda 函数的序列化问题。我们只能采用手动实现 interface 的方式来传入相关 JDBC Statement build 函数
class CkSinkBuilder extends JdbcStatementBuilder[(Int, String, String)] {
def accept(ps: PreparedStatement, v: (Int, String, String)): Unit = {
ps.setInt(1, v._1)
ps.setString(2, v._2)
ps.setString(3, v._3)
}
}
object To_CK {
def main(args: Array[String]): Unit = {
//获得环境
val env = StreamExecutionEnvironment.getExecutionEnvironment
env.setParallelism(1) //设置并发为1,防止打印控制台乱序
env.setStreamTimeCharacteristic(TimeCharacteristic.EventTime) //Flink 默认使用 ProcessingTime 处理,设置成event time
val tEnv = StreamTableEnvironment.create(env) //Table Env 环境
//从Kafka读取数据
val pros = new Properties()
pros.setProperty("bootstrap.servers", "192.168.226.10:9092")
pros.setProperty("group.id", "test")
pros.setProperty("key.deserializer", "org.apache.kafka.common.serialization.StringDeserializer")
pros.setProperty("value.deserializer", "org.apache.kafka.common.serialization.StringDeserializer")
pros.setProperty("auto.offset.reset", "latest")
import org.apache.flink.api.scala._
val dataSource = env.addSource(new FlinkKafkaConsumer[String]("test", new SimpleStringSchema(), pros))
val sql="insert into ChinaDW.testken(userid,items,create_date)values(?,?,?)"
val result = dataSource.map(line => {
val x = line.split("\t")
//print("收到数据",x(0),x(1),x(2),"\n")
val member_id = x(0).trim.toLong
val item = x(1).trim
val times = x(2).trim
var time = 0l
try{time = new SimpleDateFormat("yyyy-MM-dd HH:mm:ss").parse(times).getTime} //时间戳类型
catch {case e: Exception => {print( e.getMessage)}}
(member_id.toInt, item.toString ,time.toLong)
}).assignTimestampsAndWatermarks(new BoundedOutOfOrdernessTimestampExtractor[(Int, String, Long)](Time.seconds(2)) {
override def extractTimestamp(t: (Int, String, Long)): Long = t._3
}).map(x=>{(x._1,x._2,new SimpleDateFormat("yyyy-MM-dd HH:mm:ss").format(x._3))}) //时间还原成datetime类型
//result.print()
result.addSink(JdbcSink.sink[(Int,String,String)](sql,new CkSinkBuilder,new JdbcExecutionOptions.Builder().withBatchSize(5).build(),
new JdbcConnectionOptions.JdbcConnectionOptionsBuilder()
.withUrl("jdbc:clickhouse://XX.XX.XX.XX:8123")
.withDriverName("ru.yandex.clickhouse.ClickHouseDriver")
.withUsername("default")
.build()
))
env.execute("To_CK")
}
}
到Clickhouse查询,数据已经成功写入
三、利用Tableau进行可视化
可视化环节就比较简单了,这里选择了Tableau连接Clickhouse,因为以下原因:
1.简单方便,0代码完成各种高大上可视化
2.快速开发下面这个图大概就用了2分钟就搞定了
3.支持数据源多,现在用clickhouse,将来就算换成mysql,阿里云或者其他各种文件一样支持,只需要更改链接就可以了
这里要说明一下,tableau必须2020版本以上,不然连接clickhouse可能发生字段被截取的情况。。
首先安装好clickhouse的ODBC驱动,我安装的是clickhouse-odbc-1.1.7-win64.msi,然后在控制面板设置好ODBC的连接,如图
然后tableau配置clickhouse的ODBC,具体可以百度一下 Tableau如何连接Clickhouse
简单拖拉做成下面这个表,现在还剩一个问题,Tableau如何作为大屏,自动刷新? 强大的tableau当然有解决方法:
方法一:发布到Tableau server,然后利用浏览器自带的网页刷新功能,例如QQ浏览器,网址加&: refresh=yes,可以参考这个博客
方法二:安装Tableau拓展程序 ,到官网找到Auto Refresh这个插件,然后拖进去就可以直接用了,可以看到右下角有一个刷新的倒计时。
到此,整个项目结束了。