单盘转子的稳态涡动

1.刚性支撑+对称转子

1.1质量偏心+纵向放置

单盘转子的稳态涡动_第1张图片
将Jeffcott转子立起来避免了由于质量偏心加重力产生的静弯曲。
忽略轴向位移。
转子扭转刚度无限大。

(x,y)为圆盘形心o'的位置,得出形心的涡动方程。

用复数表示该方程组 z=x+iy

1.2质量偏心+横向放置

单盘转子的稳态涡动_第2张图片

质心c的运动方程

  也可以将其变换为形心o'的涡动方程
质心c的转动方程

注:由质心运动方程推导形心的涡动方程
Xc = X + e*cosφ,Yc = Y + e*sinφ
对其两边求两阶导
Xc'' = X'' - eφ''*sinφ - eφ'**2*cosφ,Yc'' = Y'' - eφ''*cosφ - eφ'**2*sinφ
因为是稳态,所以角加速度φ''=0。
将这些式子带入质心的运动方程
mX'' + kX = meφ'**2*cosφ - mg
mY'' + kY = meφ'**2*sinφ
转速为Ω,则φ=Ωt,φ'=Ω
mX'' + kX = meΩ**2*cosΩt - mg
mY'' + kY = meΩ**2*sinΩt
 

2.刚性支撑+偏置转子

单盘转子的稳态涡动_第3张图片
与对称转子对转轴只作用有力 不同的是,圆盘对转轴还作用有力矩。

F与M的方向如图:
单盘转子的稳态涡动_第4张图片

圆盘给转轴的力

Fx = K11*x + K12*α
Mx = K21*x + K22*α
Fy = K11*y + K12*β
-My = K21*y + K22*β   这里的My取负号,是因为方向沿x轴负方向
注:K11 = Fx/x   K12 = Fx/α   K21 = Mx/x  K22 = Mx/α,K12=K21
由于是圆截面,则Fx/x=Fy/y,Fx/α = Fy/β,Mx/x = My/y,Mx/α=My/β
如:K11是指 沿x方向移动单位位移时,需要在x方向施加的力。也就等于,沿y方向移动单位位移时,需要在y方向施加的力。

圆盘形心o'的运动方程

随圆盘转动的坐标系o'ξ1η1ζ下的摆动方程

单盘转子的稳态涡动_第5张图片

稳态,β为小角度,忽略二阶及以上的非线性项,则上述方程化简为:
单盘转子的稳态涡动_第6张图片 随动坐标系中的外力矩不容易计算

平动坐标系o'x'y'z'下的摆动方程

3.刚性支撑+悬臂转子

单盘转子的稳态涡动_第7张图片

其涡动方程与偏置转子相同

单盘转子的稳态涡动_第8张图片

注:涡动方程就是形心的运动微分方程,如果圆盘还有偏摆,再加上形心的摆动微分方程。

 

4. 弹性支撑+对称转子

单盘转子的稳态涡动_第9张图片

形心运动方程
单盘转子的稳态涡动_第10张图片

5. 弹性支撑+偏置转子

单盘转子的稳态涡动_第11张图片

单盘转子的稳态涡动_第12张图片

你可能感兴趣的:(RotorDynamics)