YOLO 是现今非常流行的目标检测框架。源代码是用C 写的。这里我们利用opencv 调用训练好的yolo 模型来实现一个demo。
#首先导入相应的模块
import cv2 as cv
import argparse
import sys
import numpy as np
import os.path
# 初始化变量
confThreshold = 0.5 #置信度阈值
nmsThreshold = 0.4 # 非极大值一直阈值
inpWidth = 416 # 网络输入图像的宽
inpHeight = 416 # 网络输入图像的高
# 构建参数解析器
parser = argparse.ArgumentParser(description='Object Detection using YOLO in OPENCV')
parser.add_argument('--image', help='Path to image file.')
parser.add_argument('--video', help='Path to video file.')
args = parser.parse_args()
# 载入类别名称
classesFile = "coco.names";
classes = None
with open(classesFile, 'rt') as f:
classes = f.read().rstrip('\n').split('\n')
#定义 模型的配置和权重文件.
modelConfiguration = "yolov3.cfg";
modelWeights = "yolov3.weights";
net = cv.dnn.readNetFromDarknet(modelConfiguration, modelWeights)
net.setPreferableBackend(cv.dnn.DNN_BACKEND_OPENCV)
net.setPreferableTarget(cv.dnn.DNN_TARGET_CPU)
# 获得输出层的名字
def getOutputsNames(net):
# 获得网络中所有层的名字
layersNames = net.getLayerNames()
# Get the names of the output layers, i.e. the layers with unconnected outputs
return [layersNames[i[0] - 1] for i in net.getUnconnectedOutLayers()]
# 画预测的包围框
def drawPred(classId, conf, left, top, right, bottom):
cv.rectangle(frame, (left, top), (right, bottom), (255, 178, 50),3)
label = '%.2f'%conf
#得到类别名称的标签和它的置信度得分
if classes:
assert(classId confThreshold:
center_x = int(detection[0] * frameWidth)
center_y = int(detection[1] * frameHeight)
width = int(detection[2] * frameWidth)
height = int(detection[3] * frameHeight)
left = int(center_x - width / 2)
top = int(center_y - height / 2)
classIds.append(classId)
confidences.append(float(confidence))
boxes.append([left, top, width, height])
# 运行非极大值抑制来缓解具有低置信度得分的冗余的覆盖包围框
indices = cv.dnn.NMSBoxes(boxes, confidences, confThreshold, nmsThreshold)
for i in indices:
i = i[0]
box = boxes[i]
left = box[0]
top = box[1]
width = box[2]
height = box[3]
drawPred(classIds[i], confidences[i], left, top, left + width, top + height)
# 处理输入
winName = 'object detection in OpenCV'
cv.namedWindow(winName, cv.WINDOW_NORMAL)
outputFile = "yolo_out_py.avi"
if (args.image):
# 打开图像文件
if not os.path.isfile(args.image):
print("Input image file ", args.image, " doesn't exist")
sys.exit(1)
cap = cv.VideoCapture(args.image)
outputFile = args.image[:-4]+'_yolo_out_py.jpg'
elif (args.video):
# 打开视频文件
if not os.path.isfile(args.video):
print("Input video file ", args.video, " doesn't exist")
sys.exit(1)
cap = cv.VideoCapture(args.video)
outputFile = args.video[:-4]+'_yolo_out_py.avi'
else:
# 网络摄像头输入
cap = cv.VideoCapture(0)
# 获取Get the video writer initialized to save the output video
if (not args.image):
vid_writer = cv.VideoWriter(outputFile, cv.VideoWriter_fourcc('M','J','P','G'), 30, (round(cap.get(cv.CAP_PROP_FRAME_WIDTH)),round(cap.get(cv.CAP_PROP_FRAME_HEIGHT))))
while cv.waitKey(1) < 0:
# 从视频中获取帧
hasFrame, frame = cap.read()
# 如果到达了视频的末尾,则停止程序
if not hasFrame:
print("Done processing !!!")
print("Output file is stored as ", outputFile)
cv.waitKey(3000)
break
# 从一帧创建一个4D 的结构
blob = cv.dnn.blobFromImage(frame, scalefactor=1/255, size=(inpWidth, inpHeight), mean=[0,0,0], swapRB=1, crop=False)
# 设置网络的输入
net.setInput(blob)
# 运行网络的前向传播
outs = net.forward(getOutputsNames(net))
# 去除掉具有低置信度得分的包围框
postprocess(frame, outs)
# 放置有效率的信息。 函数 getPerfProfile 返回推断的整体的时间 和每一层的时间
t, _ = net.getPerfProfile()
label = 'Inference time: %.2f ms' % (t * 1000.0 / cv.getTickFrequency())
cv.putText(frame, label, (0, 15), cv.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 255))
# 将检测结果写入视频帧
if (args.image):
cv.imwrite(outputFile, frame.astype(np.uint8));
else:
vid_writer.write(frame.astype(np.uint8))
cv.imshow(winName, frame)
这样一个opencv yolo 物体检测的模块就写好了。