给你一个points 数组,表示 2D 平面上的一些点,其中 points[i] = [xi, yi] 。
连接点 [xi, yi] 和点 [xj, yj] 的费用为它们之间的 曼哈顿距离 :|xi - xj| + |yi - yj| ,其中 |val| 表示 val 的绝对值。
请你返回将所有点连接的最小总费用。只有任意两点之间 有且仅有 一条简单路径时,才认为所有点都已连接。
示例 1:
输入:points = [[0,0],[2,2],[3,10],[5,2],[7,0]]
输出:20
解释:我们可以按照上图所示连接所有点得到最小总费用,总费用为 20 。
注意到任意两个点之间只有唯一一条路径互相到达。
示例 2:输入:points = [[3,12],[-2,5],[-4,1]]
输出:18
示例 3:输入:points = [[0,0],[1,1],[1,0],[-1,1]]
输出:4
示例 4:输入:points = [[-1000000,-1000000],[1000000,1000000]]
输出:4000000
示例 5:输入:points = [[0,0]]
输出:0
提示:
1 <= points.length <= 1000
-106 <= xi, yi <= 106
所有点 (xi, yi) 两两不同。来源:力扣(LeetCode)
链接:题目链接
题解:
class Solution: def minCostConnectPoints(self, points): def distance(p1, p2): dx = p1[0] - p2[0] dy = p1[1] - p2[1] return abs(dx) + abs(dy) n = len(points) visited = [0]*n dist = [float("inf")]*n path = [-1]*n visited[0] = 1 dist[0] = 0 for i in range(1,n): dist[i] = distance(points[i], points[0]) path[i] = 0 for j in range(1,n): index = 0 d = float("inf") for i in range(1,n): if visited[i] == 0 and dist[i] < d: d = dist[i] index = i visited[index] = 1 dist[index] = 0 for i in range(1,n): if visited[i] == 0 and dist[i] > distance(points[index], points[i]): dist[i] = distance(points[index], points[i]) path[i] = index res = 0 for i in range(1,n):res += distance(points[i], points[path[i]]) print(path) return res