聊聊cortex的Distributor

本文主要研究一下cortex的Distributor

Distributor

cortex/pkg/distributor/distributor.go

// Distributor is a storage.SampleAppender and a client.Querier which
// forwards appends and queries to individual ingesters.
type Distributor struct {
    services.Service

    cfg           Config
    ingestersRing ring.ReadRing
    ingesterPool  *ring_client.Pool
    limits        *validation.Overrides

    // The global rate limiter requires a distributors ring to count
    // the number of healthy instances
    distributorsRing *ring.Lifecycler

    // For handling HA replicas.
    HATracker *haTracker

    // Per-user rate limiter.
    ingestionRateLimiter *limiter.RateLimiter

    // Manager for subservices (HA Tracker, distributor ring and client pool)
    subservices        *services.Manager
    subservicesWatcher *services.FailureWatcher
}
Distributor用于转发、追加、查询ingesters

Push

cortex/pkg/distributor/distributor.go

// Push implements client.IngesterServer
func (d *Distributor) Push(ctx context.Context, req *client.WriteRequest) (*client.WriteResponse, error) {
    userID, err := tenant.TenantID(ctx)
    if err != nil {
        return nil, err
    }
    source := util.GetSourceIPsFromOutgoingCtx(ctx)

    var firstPartialErr error
    removeReplica := false

    numSamples := 0
    for _, ts := range req.Timeseries {
        numSamples += len(ts.Samples)
    }
    // Count the total samples in, prior to validation or deduplication, for comparison with other metrics.
    incomingSamples.WithLabelValues(userID).Add(float64(numSamples))
    // Count the total number of metadata in.
    incomingMetadata.WithLabelValues(userID).Add(float64(len(req.Metadata)))

    // A WriteRequest can only contain series or metadata but not both. This might change in the future.
    // For each timeseries or samples, we compute a hash to distribute across ingesters;
    // check each sample/metadata and discard if outside limits.
    validatedTimeseries := make([]client.PreallocTimeseries, 0, len(req.Timeseries))
    validatedMetadata := make([]*client.MetricMetadata, 0, len(req.Metadata))
    metadataKeys := make([]uint32, 0, len(req.Metadata))
    seriesKeys := make([]uint32, 0, len(req.Timeseries))
    validatedSamples := 0

    if d.limits.AcceptHASamples(userID) && len(req.Timeseries) > 0 {
        cluster, replica := findHALabels(d.limits.HAReplicaLabel(userID), d.limits.HAClusterLabel(userID), req.Timeseries[0].Labels)
        removeReplica, err = d.checkSample(ctx, userID, cluster, replica)
        if err != nil {
            // Ensure the request slice is reused if the series get deduped.
            client.ReuseSlice(req.Timeseries)

            if errors.Is(err, replicasNotMatchError{}) {
                // These samples have been deduped.
                dedupedSamples.WithLabelValues(userID, cluster).Add(float64(numSamples))
                return nil, httpgrpc.Errorf(http.StatusAccepted, err.Error())
            }

            if errors.Is(err, tooManyClustersError{}) {
                validation.DiscardedSamples.WithLabelValues(validation.TooManyHAClusters, userID).Add(float64(numSamples))
                return nil, httpgrpc.Errorf(http.StatusBadRequest, err.Error())
            }

            return nil, err
        }
        // If there wasn't an error but removeReplica is false that means we didn't find both HA labels.
        if !removeReplica {
            nonHASamples.WithLabelValues(userID).Add(float64(numSamples))
        }
    }

    latestSampleTimestampMs := int64(0)
    defer func() {
        // Update this metric even in case of errors.
        if latestSampleTimestampMs > 0 {
            latestSeenSampleTimestampPerUser.WithLabelValues(userID).Set(float64(latestSampleTimestampMs) / 1000)
        }
    }()

    // For each timeseries, compute a hash to distribute across ingesters;
    // check each sample and discard if outside limits.
    for _, ts := range req.Timeseries {
        // Use timestamp of latest sample in the series. If samples for series are not ordered, metric for user may be wrong.
        if len(ts.Samples) > 0 {
            latestSampleTimestampMs = util.Max64(latestSampleTimestampMs, ts.Samples[len(ts.Samples)-1].TimestampMs)
        }

        if mrc := d.limits.MetricRelabelConfigs(userID); len(mrc) > 0 {
            l := relabel.Process(client.FromLabelAdaptersToLabels(ts.Labels), mrc...)
            ts.Labels = client.FromLabelsToLabelAdapters(l)
        }

        // If we found both the cluster and replica labels, we only want to include the cluster label when
        // storing series in Cortex. If we kept the replica label we would end up with another series for the same
        // series we're trying to dedupe when HA tracking moves over to a different replica.
        if removeReplica {
            removeLabel(d.limits.HAReplicaLabel(userID), &ts.Labels)
        }

        for _, labelName := range d.limits.DropLabels(userID) {
            removeLabel(labelName, &ts.Labels)
        }

        if len(ts.Labels) == 0 {
            continue
        }

        // We rely on sorted labels in different places:
        // 1) When computing token for labels, and sharding by all labels. Here different order of labels returns
        // different tokens, which is bad.
        // 2) In validation code, when checking for duplicate label names. As duplicate label names are rejected
        // later in the validation phase, we ignore them here.
        sortLabelsIfNeeded(ts.Labels)

        // Generate the sharding token based on the series labels without the HA replica
        // label and dropped labels (if any)
        key, err := d.tokenForLabels(userID, ts.Labels)
        if err != nil {
            return nil, err
        }

        validatedSeries, err := d.validateSeries(ts, userID)

        // Errors in validation are considered non-fatal, as one series in a request may contain
        // invalid data but all the remaining series could be perfectly valid.
        if err != nil && firstPartialErr == nil {
            firstPartialErr = err
        }

        // validateSeries would have returned an emptyPreallocSeries if there were no valid samples.
        if validatedSeries == emptyPreallocSeries {
            continue
        }

        seriesKeys = append(seriesKeys, key)
        validatedTimeseries = append(validatedTimeseries, validatedSeries)
        validatedSamples += len(ts.Samples)
    }

    for _, m := range req.Metadata {
        err := validation.ValidateMetadata(d.limits, userID, m)

        if err != nil {
            if firstPartialErr == nil {
                firstPartialErr = err
            }

            continue
        }

        metadataKeys = append(metadataKeys, d.tokenForMetadata(userID, m.MetricFamilyName))
        validatedMetadata = append(validatedMetadata, m)
    }

    receivedSamples.WithLabelValues(userID).Add(float64(validatedSamples))
    receivedMetadata.WithLabelValues(userID).Add(float64(len(validatedMetadata)))

    if len(seriesKeys) == 0 && len(metadataKeys) == 0 {
        // Ensure the request slice is reused if there's no series or metadata passing the validation.
        client.ReuseSlice(req.Timeseries)

        return &client.WriteResponse{}, firstPartialErr
    }

    now := time.Now()
    totalN := validatedSamples + len(validatedMetadata)
    if !d.ingestionRateLimiter.AllowN(now, userID, totalN) {
        // Ensure the request slice is reused if the request is rate limited.
        client.ReuseSlice(req.Timeseries)

        // Return a 4xx here to have the client discard the data and not retry. If a client
        // is sending too much data consistently we will unlikely ever catch up otherwise.
        validation.DiscardedSamples.WithLabelValues(validation.RateLimited, userID).Add(float64(validatedSamples))
        validation.DiscardedMetadata.WithLabelValues(validation.RateLimited, userID).Add(float64(len(validatedMetadata)))
        return nil, httpgrpc.Errorf(http.StatusTooManyRequests, "ingestion rate limit (%v) exceeded while adding %d samples and %d metadata", d.ingestionRateLimiter.Limit(now, userID), validatedSamples, len(validatedMetadata))
    }

    subRing := d.ingestersRing

    // Obtain a subring if required.
    if d.cfg.ShardingStrategy == util.ShardingStrategyShuffle {
        subRing = d.ingestersRing.ShuffleShard(userID, d.limits.IngestionTenantShardSize(userID))
    }

    keys := append(seriesKeys, metadataKeys...)
    initialMetadataIndex := len(seriesKeys)

    op := ring.WriteNoExtend
    if d.cfg.ExtendWrites {
        op = ring.Write
    }

    err = ring.DoBatch(ctx, op, subRing, keys, func(ingester ring.IngesterDesc, indexes []int) error {
        timeseries := make([]client.PreallocTimeseries, 0, len(indexes))
        var metadata []*client.MetricMetadata

        for _, i := range indexes {
            if i >= initialMetadataIndex {
                metadata = append(metadata, validatedMetadata[i-initialMetadataIndex])
            } else {
                timeseries = append(timeseries, validatedTimeseries[i])
            }
        }

        // Use a background context to make sure all ingesters get samples even if we return early
        localCtx, cancel := context.WithTimeout(context.Background(), d.cfg.RemoteTimeout)
        defer cancel()
        localCtx = user.InjectOrgID(localCtx, userID)
        if sp := opentracing.SpanFromContext(ctx); sp != nil {
            localCtx = opentracing.ContextWithSpan(localCtx, sp)
        }

        // Get clientIP(s) from Context and add it to localCtx
        localCtx = util.AddSourceIPsToOutgoingContext(localCtx, source)

        return d.send(localCtx, ingester, timeseries, metadata, req.Source)
    }, func() { client.ReuseSlice(req.Timeseries) })
    if err != nil {
        return nil, err
    }
    return &client.WriteResponse{}, firstPartialErr
}
Push方法在d.cfg.ShardingStrategy为util.ShardingStrategyShuffle时,会通过d.ingestersRing.ShuffleShard确定subRing;之后通过ring.DoBatch提交keys,其callback函数执行d.send(localCtx, ingester, timeseries, metadata, req.Source)

DoBatch

cortex/pkg/ring/batch.go

// DoBatch request against a set of keys in the ring, handling replication and
// failures. For example if we want to write N items where they may all
// hit different ingesters, and we want them all replicated R ways with
// quorum writes, we track the relationship between batch RPCs and the items
// within them.
//
// Callback is passed the ingester to target, and the indexes of the keys
// to send to that ingester.
//
// Not implemented as a method on Ring so we can test separately.
func DoBatch(ctx context.Context, op Operation, r ReadRing, keys []uint32, callback func(IngesterDesc, []int) error, cleanup func()) error {
    if r.IngesterCount() <= 0 {
        return fmt.Errorf("DoBatch: IngesterCount <= 0")
    }
    expectedTrackers := len(keys) * (r.ReplicationFactor() + 1) / r.IngesterCount()
    itemTrackers := make([]itemTracker, len(keys))
    ingesters := make(map[string]ingester, r.IngesterCount())

    var (
        bufDescs [GetBufferSize]IngesterDesc
        bufHosts [GetBufferSize]string
        bufZones [GetBufferSize]string
    )
    for i, key := range keys {
        replicationSet, err := r.Get(key, op, bufDescs[:0], bufHosts[:0], bufZones[:0])
        if err != nil {
            return err
        }
        itemTrackers[i].minSuccess = len(replicationSet.Ingesters) - replicationSet.MaxErrors
        itemTrackers[i].maxFailures = replicationSet.MaxErrors

        for _, desc := range replicationSet.Ingesters {
            curr, found := ingesters[desc.Addr]
            if !found {
                curr.itemTrackers = make([]*itemTracker, 0, expectedTrackers)
                curr.indexes = make([]int, 0, expectedTrackers)
            }
            ingesters[desc.Addr] = ingester{
                desc:         desc,
                itemTrackers: append(curr.itemTrackers, &itemTrackers[i]),
                indexes:      append(curr.indexes, i),
            }
        }
    }

    tracker := batchTracker{
        done: make(chan struct{}, 1),
        err:  make(chan error, 1),
    }
    tracker.rpcsPending.Store(int32(len(itemTrackers)))

    var wg sync.WaitGroup

    wg.Add(len(ingesters))
    for _, i := range ingesters {
        go func(i ingester) {
            err := callback(i.desc, i.indexes)
            tracker.record(i.itemTrackers, err)
            wg.Done()
        }(i)
    }

    // Perform cleanup at the end.
    go func() {
        wg.Wait()

        cleanup()
    }()

    select {
    case err := <-tracker.err:
        return err
    case <-tracker.done:
        return nil
    case <-ctx.Done():
        return ctx.Err()
    }
}
DoBatch方法提供了callback函数用于处理ingester及indexes

Query

cortex/pkg/distributor/query.go

// Query multiple ingesters and returns a Matrix of samples.
func (d *Distributor) Query(ctx context.Context, from, to model.Time, matchers ...*labels.Matcher) (model.Matrix, error) {
    var matrix model.Matrix
    err := instrument.CollectedRequest(ctx, "Distributor.Query", queryDuration, instrument.ErrorCode, func(ctx context.Context) error {
        req, err := ingester_client.ToQueryRequest(from, to, matchers)
        if err != nil {
            return err
        }

        replicationSet, err := d.GetIngestersForQuery(ctx, matchers...)
        if err != nil {
            return err
        }

        matrix, err = d.queryIngesters(ctx, replicationSet, req)
        if err != nil {
            return err
        }

        if s := opentracing.SpanFromContext(ctx); s != nil {
            s.LogKV("series", len(matrix))
        }
        return nil
    })
    return matrix, err
}
Query方法通过d.GetIngestersForQuery获取replicationSet,再通过d.queryIngesters获取matrix

小结

cortex的Distributor提供了Push、Query方法;Push方法会通过d.ingestersRing.ShuffleShard确定subRing;之后通过ring.DoBatch提交keys;Query方法通过d.GetIngestersForQuery获取replicationSet,再通过d.queryIngesters获取matrix。

doc

你可能感兴趣的:(golang)