伟大的Bill Gates 曾经失言:
640K ought to be enough for everybody — Bill Gates 1981
程序员们经常编写内存管理程序,往往提心吊胆。如果不想触雷,唯一的解决办法就是发现所有潜伏的地雷并且排除它们,躲是躲不了的。本文的内容比一般教科书的要深入得多,读者需细心阅读,做到真正地通晓内存管理。
1、内存分配方式
内存分配方式有三种:
(1)从静态存储区域分配。内存在程序编译的时候就已经分配好,这块内存在程序的整个运行期间都存在。例如全局变量,static变量。
(2)在栈上创建。在执行函数时,函数内局部变量的存储单元都可以在栈上创建,函数执行结束时这些存储单元自动被释放。栈内存分配运算内置于处理器的指令集中,效率很高,但是分配的内存容量有限。
(3) 从堆上分配,亦称动态内存分配。程序在运行的时候用malloc或new申请任意多少的内存,程序员自己负责在何时用free或delete释放内存。动态内存的生存期由我们决定,使用非常灵活,但问题也最多。
2、常见的内存错误及其对策
发生内存错误是件非常麻烦的事情。编译器不能自动发现这些错误,通常是在程序运行时才能捕捉到。而这些错误大多没有明显的症状,时隐时现,增加了改错的难度。有时用户怒气冲冲地把你找来,程序却没有发生任何问题,你一走,错误又发作了。 常见的内存错误及其对策如下:
* 内存分配未成功,却使用了它。
编程新手常犯这种错误,因为他们没有意识到内存分配会不成功。常用解决办法是,在使用内存之前检查指针是否为NULL。如果指针p是函数的参数,那么在函数的入口处用assert(p!=NULL)进行
检查。如果是用malloc或new来申请内存,应该用if(p==NULL) 或if(p!=NULL)进行防错处理。
* 内存分配虽然成功,但是尚未初始化就引用它。
犯这种错误主要有两个起因:一是没有初始化的观念;二是误以为内存的缺省初值全为零,导致引用初值错误(例如数组)。 内存的缺省初值究竟是什么并没有统一的标准,尽管有些时候为零值,我们宁可信其无不可信其有。所以无论用何种方式创建数组,都别忘了赋初值,即便是赋零值也不可省略,不要嫌麻烦。
* 内存分配成功并且已经初始化,但操作越过了内存的边界。
例如在使用数组时经常发生下标“多1”或者“少1”的操作。特别是在for循环语句中,循环次数很容易搞错,导致数组操作越界。
* 忘记了释放内存,造成内存泄露。
含有这种错误的函数每被调用一次就丢失一块内存。刚开始时系统的内存充足,你看不到错误。终有一次程序突然死掉,系统出现提示:内存耗尽。
动态内存的申请与释放必须配对,程序中malloc与free的使用次数一定要相同,否则肯定有错误(new/delete同理)。
* 释放了内存却继续使用它。
有三种情况:
(1)程序中的对象调用关系过于复杂,实在难以搞清楚某个对象究竟是否已经释放了内存,此时应该重新设计数据结构,从根本上解决对象管理的混乱局面。
(2)函数的return语句写错了,注意不要返回指向“栈内存”的“指针”或者“引用”,因为该内存在函数体结束时被自动销毁。
(3)使用free或delete释放了内存后,没有将指针设置为NULL。导致产生“野指针”。
【规则1】用malloc或new申请内存之后,应该立即检查指针值是否为NULL。防止使用指针值为NULL的内存。
【规则2】不要忘记为数组和动态内存赋初值。防止将未被初始化的内存作为右值使用。
【规则3】避免数组或指针的下标越界,特别要当心发生“多1”或者“少1”操作。
【规则4】动态内存的申请与释放必须配对,防止内存泄漏。
【规则5】用free或delete释放了内存之后,立即将指针设置为NULL,防止产生“野指针”。
3、指针与数组的对比
C++/C程序中,指针和数组在不少地方可以相互替换着用,让人产生一种错觉,以为两者是等价的。
数组要么在静态存储区被创建(如全局数组),要么在栈上被创建。数组名对应着(而不是指向)一块内存,其地址与容量在生命期内保持不变,只有数组的内容可以改变。
指针可以随时指向任意类型的内存块,它的特征是“可变”,所以我们常用指针来操作动态内存。指针远比数组灵活,但也更危险。
下面以字符串为例比较指针与数组的特性。
3.1 修改内容
示例3-1中,字符数组a的容量是6个字符,其内容为hello。a的内容可以改变,如a[0]= ‘X’。指针p指向常量字符串“world”(位于静态存储区,内容为world),常量字符串的内容是不可以被修改的。从语法上看,编译器并不觉得语句p[0]= ‘X’有什么不妥,但是该语句企图修改常量字符串的内容而导致运行错误。
char a[] = “hello”; a[0] = ‘X’; cout << a << endl; char *p = “world”; // 注意p指向常量字符串 p[0] = ‘X’; // 编译器不能发现该错误 cout << p << endl; |
// 数组… char a[] = "hello"; char b[10]; strcpy(b, a); // 不能用 b = a; if(strcmp(b, a) == 0) // 不能用 if (b == a) … // 指针… int len = strlen(a); char *p = (char *)malloc(sizeof(char)*(len+1)); strcpy(p,a); // 不要用 p = a; if(strcmp(p, a) == 0) // 不要用 if (p == a) … |
char a[] = "hello world"; char *p = a; cout<< sizeof(a) << endl; // 12字节 cout<< sizeof(p) << endl; // 4字节 |
void Func(char a[100]) { cout<< sizeof(a) << endl; // 4字节而不是100字节 } |
示例3.3(b) 数组退化为指针
4、指针参数是如何传递内存的?
如果函数的参数是一个指针,不要指望用该指针去申请动态内存。示例7-4-1中,Test函数的语句GetMemory(str, 200)并没有使str获得期望的内存,str依旧是NULL,为什么?
void GetMemory(char *p, int num) { p = (char *)malloc(sizeof(char) * num); } void Test(void) { char *str = NULL; GetMemory(str, 100); // str 仍然为 NULL strcpy(str, "hello"); // 运行错误 } |
void GetMemory2(char **p, int num) { *p = (char *)malloc(sizeof(char) * num); } void Test2(void) { char *str = NULL; GetMemory2(&str, 100); // 注意参数是 &str,而不是str strcpy(str, "hello"); cout<< str << endl; free(str); } |
char *GetMemory3(int num) { char *p = (char *)malloc(sizeof(char) * num); return p; } void Test3(void) { char *str = NULL; str = GetMemory3(100); strcpy(str, "hello"); cout<< str << endl; free(str); } |
char *GetString(void) { char p[] = "hello world"; return p; // 编译器将提出警告 } void Test4(void) { char *str = NULL; str = GetString(); // str 的内容是垃圾 cout<< str << endl; } |
char *GetString2(void) { char *p = "hello world"; return p; } void Test5(void) { char *str = NULL; str = GetString2(); cout<< str << endl; } |
char *p = NULL; char *str = (char *) malloc(100); |
class A { public: void Func(void){ cout << “Func of class A” << endl; } }; void Test(void) { A *p; { A a; p = &a; // 注意 a 的生命期 } p->Func(); // p是“野指针” } |
函数Test在执行语句p->Func()时,对象a已经消失,而p是指向a的,所以p就成了“野指针”。但奇怪的是我运行这个程序时居然没有出错,这可能与编译器有关。
6、有了malloc/free为什么还要new/delete?
malloc与free是C++/C语言的标准库函数,new/delete是C++的运算符。它们都可用于申请动态内存和释放内存。
对于非内部数据类型的对象而言,光用maloc/free无法满足动态对象的要求。对象在创建的同时要自动执行构造函数,对象在消亡之前要自动执行析构函数。由于malloc/free是库函数而不是运算符,不在编译器控制权限之内,不能够把执行构造函数和析构函数的任务强加于malloc/free。
因此C++语言需要一个能完成动态内存分配和初始化工作的运算符new,以及一个能完成清理与释放内存工作的运算符delete。注意new/delete不是库函数。我们先看一看malloc/free和new/delete如何实现对象的动态内存管理,见示例6。
class Obj { public : Obj(void){ cout << “Initialization” << endl; } ~Obj(void){ cout << “Destroy” << endl; } void Initialize(void){ cout << “Initialization” << endl; } void Destroy(void){ cout << “Destroy” << endl; } }; void UseMallocFree(void) { Obj *a = (obj *)malloc(sizeof(obj)); // 申请动态内存 a->Initialize(); // 初始化 //… a->Destroy(); // 清除工作 free(a); // 释放内存 } void UseNewDelete(void) { Obj *a = new Obj; // 申请动态内存并且初始化 //… delete a; // 清除并且释放内存 } |
void Func(void) { A *a = new A; if(a == NULL) { return; } … } |
void Func(void) { A *a = new A; if(a == NULL) { cout << “Memory Exhausted” << endl; exit(1); } … } |
void main(void) { float *p = NULL; while(TRUE) { p = new float[1000000]; cout << “eat memory” << endl; if(p==NULL) exit(1); } } |
示例7试图耗尽操作系统的内存
8、malloc/free 的使用要点
函数malloc的原型如下:
void * malloc(size_t size); |
int *p = (int *) malloc(sizeof(int) * length); |
cout << sizeof(char) << endl; cout << sizeof(int) << endl; cout << sizeof(unsigned int) << endl; cout << sizeof(long) << endl; cout << sizeof(unsigned long) << endl; cout << sizeof(float) << endl; cout << sizeof(double) << endl; cout << sizeof(void *) << endl; |
void free( void * memblock ); |
int *p1 = (int *)malloc(sizeof(int) * length); int *p2 = new int[length]; |
class Obj { public : Obj(void); // 无参数的构造函数 Obj(int x); // 带一个参数的构造函数 … } void Test(void) { Obj *a = new Obj; Obj *b = new Obj(1); // 初值为1 … delete a; delete b; } |
Obj *objects = new Obj[100]; // 创建100个动态对象 |
Obj *objects = new Obj[100](1);// 创建100个动态对象的同时赋初值1 |
delete []objects; // 正确的用法 delete objects; // 错误的用法 |