MySQL高级-MySQL锁

目录

  • 1 锁概述
  • 2.锁分类
  • 3.Mysql 锁
  • 4.MyISAM 表锁
    • 4.1 如何加表锁
    • 4.2 读锁案例
      • 4.2.1.准备环境
      • 4.2.2.加读锁后查询案例
      • 4.2.3.加读锁后更新案例
    • 4.3 写锁案例
    • 4.4.结论
    • 4.5.查看锁的争用情况
  • 5.InnoDB 行锁
    • 5.1 行锁介绍
    • 5.2 背景知识
    • 5.3 InnoDB 的行锁模式
    • 5.4 案例准备工作
    • 5.5 行锁基本演示
    • 5.6 无索引行锁升级为表锁
    • 5.7 间隙锁危害
    • 5.8 InnoDB 行锁争用情况
    • 5.9 总结

1 锁概述

锁是计算机协调多个进程或线程并发访问某一资源的机制(避免资源争抢)
数据库中的锁可以用来解决因为并发访问导致数据出现的一些问题,如事务中的脏读,不可重复读机制。

在数据库中,除传统的计算资源(如 CPU、RAM、I/O 等)的争用以外,数据也是一种供许多用户共享的资源。如何保证数据并发访问的一致性、有效性是所有数据库必须解决的一个问题,锁冲突也是影响数据库并发访问性能的一个重要因素。从这个角度来说,锁对数据库而言显得尤其重要,也更加复杂。

2.锁分类

从对数据操作的粒度分 :

1) 表锁:操作时,会锁定整个表

2) 行锁:操作时,会锁定当前操作行

从对数据操作的类型分:

1) 读锁(共享锁):针对同一份数据,多个读操作可以同时进行而不会互相影响

2) 写锁(排它锁):当前操作没有完成之前,它会阻断其他写锁和读锁

3.Mysql 锁

相对其他数据库而言,MySQL的锁机制比较简单,其最显著的特点是不同的存储引擎支持不同的锁机制。下表中罗列出了各存储引擎对锁的支持情况:

存储引擎 表级锁 行级锁 页面锁
MyISAM 支持 不支持 不支持
InnoDB 支持 支持 不支持
MEMORY 支持 不支持 不支持
BDB 支持 不支持 支持

MyISAM 默认支持表级锁,不支持行级锁。InnoDB既支持表级锁,又支持行级锁,默认支持的是行级锁。

MySQL这3种锁的特性可大致归纳如下 :

锁类型 特点
表级锁 偏向MyISAM 存储引擎,开销小,加锁快不会出现死锁;锁定粒度大,发生锁冲突的概率最高,并发度最低
行级锁 偏向InnoDB 存储引擎,开销大,加锁慢;会出现死锁;锁定粒度最小,发生锁冲突的概率最低,并发度也最高
页面锁 开销和加锁时间界于表锁和行锁之间;会出现死锁;锁定粒度界于表锁和行锁之间,并发度一般。

从上述特点可见,很难笼统地说哪种锁更好,只能就具体应用的特点来说哪种锁更合适!仅从锁的角度来说:表级锁更适合于以查询为主,只有少量按索引条件更新数据的应用,如Web 应用;而行级锁则更适合于有大量按索引条件并发更新少量不同数据,同时又有并查询的应用,如一些在线事务处理(OLTP)系统

4.MyISAM 表锁

MyISAM 存储引擎只支持表锁,这也是MySQL开始几个版本中唯一支持的锁类型。

4.1 如何加表锁

MyISAM 在执行查询语句(SELECT)前,会自动给涉及的所有表加读锁,在执行更新操作(UPDATE、DELETE、INSERT 等)前,会自动给涉及的表加写锁这个过程并不需要用户干预,因此,用户一般不需要直接用 LOCK TABLE 命令给 MyISAM 表显式加锁

显示加表锁语法:

加读锁 : lock table table_name read;

加写锁 : lock table table_name write

4.2 读锁案例

4.2.1.准备环境

create database demo_03 default charset=utf8mb4;

use demo_03;

CREATE TABLE `tb_book` (
  `id` INT(11) auto_increment,
  `name` VARCHAR(50) DEFAULT NULL,
  `publish_time` DATE DEFAULT NULL,
  `status` CHAR(1) DEFAULT NULL,
  PRIMARY KEY (`id`)
) ENGINE=myisam DEFAULT CHARSET=utf8 ;

INSERT INTO tb_book (id, name, publish_time, status) VALUES(NULL,'java编程思想','2088-08-01','1');
INSERT INTO tb_book (id, name, publish_time, status) VALUES(NULL,'solr编程思想','2088-08-08','0');



CREATE TABLE `tb_user` (
  `id` INT(11) auto_increment,
  `name` VARCHAR(50) DEFAULT NULL,
  PRIMARY KEY (`id`)
) ENGINE=myisam DEFAULT CHARSET=utf8 ;

INSERT INTO tb_user (id, name) VALUES(NULL,'令狐冲');
INSERT INTO tb_user (id, name) VALUES(NULL,'田伯光');

另外,我们需要同时开启两个MySQL客户端。以便我们进行并发的读写操作。

4.2.2.加读锁后查询案例

我们在两个客户端中执行查找表操作。
MySQL高级-MySQL锁_第1张图片

客户端 一 :
1)获得tb_book 表的读锁

lock table tb_book read;

2) 执行查询操作

mysql> select * from tb_book;
+----+------------------+--------------+--------+
| id | name             | publish_time | status |
+----+------------------+--------------+--------+
|  1 | java编程思想     | 2088-08-01   | 1      |
|  2 | solr编程思想     | 2088-08-08   | 0      |
+----+------------------+--------------+--------+
2 rows in set (0.00 sec)

可以正常执行 , 查询出数据。

客户端 二 :
3) 执行查询操作

mysql> select * from tb_book;
+----+------------------+--------------+--------+
| id | name             | publish_time | status |
+----+------------------+--------------+--------+
|  1 | java编程思想     | 2088-08-01   | 1      |
|  2 | solr编程思想     | 2088-08-08   | 0      |
+----+------------------+--------------+--------+
2 rows in set (0.00 sec)

客户端 一 :
4)查询未锁定的表

mysql> select name from tb_user;
ERROR 1100 (HY000): Table 'tb_user' was not locked with LOCK TABLES

已对某一张表加锁之后,查询未锁定的表,此时查询失败,报错了。原因是因为我们已经对tb_book加锁了,这就相当于在12306中抢票一样,抢到了一张火车票,但是没有完成支付,就无法再购买另一张火车票。把tb_book这张表锁定了,还没有释放锁,就不能再操作其他的表了

客户端 二 :
5)查询未锁定的表

mysql> select * from tb_user;
+----+-----------+
| id | name      |
+----+-----------+
|  1 | 令狐冲    |
|  2 | 田伯光    |
+----+-----------+
2 rows in set (0.00 sec)

可以正常查询出未锁定的表;

4.2.3.加读锁后更新案例

客户端 一 :
6) 执行更新操作

mysql> update tb_book set name='solr' where id=2;
ERROR 1099 (HY000): Table 'tb_book' was locked with a READ lock and can't be updated

更新失败,提示tb_book已经被读锁锁定,不能执行写锁。也就是加了读锁,不能写
即执行更新, 直接报错 , 由于当前tb_book 获得的是 读锁, 不能执行更新操作。

客户端 二 :
7) 执行更新操作
在这里插入图片描述
光标一直闪动,说明处于阻塞状态,

客户端 一 :
8)解锁

mysql> unlock tables;
Query OK, 0 rows affected (0.00 sec)

客户端 二 :
9)再次查询

mysql>  update tb_book set name='solr' where id=2;
Query OK, 0 rows affected (0.00 sec)
Rows matched: 1  Changed: 0  Warnings: 0

当在客户端一中释放锁指令 unlock tables 后 , 客户端二中的 inesrt 语句 , 立即执行 ;

可见,MyISAM对某一张表加了读锁,它不会阻塞其它线程的读操作,但是会阻塞其它线程的写操作。

4.3 写锁案例

客户端 一 :
1)获得tb_book 表的写锁

lock table tb_book write ;

2)执行查询操作

mysql> select * from tb_book ;
+----+------------------+--------------+--------+
| id | name             | publish_time | status |
+----+------------------+--------------+--------+
|  1 | java编程思想     | 2088-08-01   | 1      |
|  2 | solr             | 2088-08-08   | 0      |
+----+------------------+--------------+--------+

查询操作执行成功;

3)执行更新操作

mysql> update tb_book set name = 'solr编程思想' where id = 2;
Query OK, 1 row affected (0.00 sec)
Rows matched: 1  Changed: 1  Warnings: 0

更新操作执行成功 ;
插入操作也一样能够成功。

客户端 二 :
4)执行查询操作
在这里插入图片描述
此时被阻塞。因为写锁是排它锁,当前操作没有完成之前,它会阻断其他写锁和读锁,也就是无法获取到select语句自带的读锁和写锁。也就是无法读和写。

当在客户端一中释放锁指令 unlock tables 后 , 客户端二中的 select 语句 , 立即执行 ;
MySQL高级-MySQL锁_第2张图片

4.4.结论

锁模式的相互兼容性如表中所示:
MySQL高级-MySQL锁_第3张图片
由上表可见:

1) 对MyISAM 表的读操作,不会阻塞其他用户对同一表的读请求,但会阻塞对同一表的写请求;

​ 2) 对MyISAM 表的写操作,则会阻塞其他用户对同一表的读和写操作;

​ 简而言之,就是读锁会阻塞写,但是不会阻塞读。而写锁,则既会阻塞读,又会阻塞写。

注意:当前读锁状态下当前线程的用户也不能写

此外,MyISAM 的读写锁调度是写优先,这也是MyISAM不适合做写为主的表的存储引擎的原因。因为写锁后,其他线程不能做任何操作,大量的更新会使查询很难得到锁,从而造成永远阻塞。

4.5.查看锁的争用情况

show open tables

MySQL高级-MySQL锁_第4张图片
当我们在另一个客户端中对tb_usr加锁之后,tb_usr的in_use列中的值变为1

show status like 'Table_locks%';

在这里插入图片描述
Table_locks_immediate : 指的是能够立即获得表级锁的次数,每立即获取锁,值加1。

Table_locks_waited : 指的是不能立即获取表级锁而需要等待的次数,每等待一次,该值加1,此值高说明存在着较为严重的表级锁争用情况。

5.InnoDB 行锁

5.1 行锁介绍

行锁特点 :偏向InnoDB 存储引擎,开销大,加锁慢;会出现死锁;锁定粒度最小,发生锁冲突的概率最低,并发度也最高。

InnoDB 与 MyISAM 的最大不同有两点:一是支持事务;二是 采用了行级锁。

5.2 背景知识

注:以下事务的相关知识点可以参看:MySQL数据库事务

事务及其ACID属性

事务是由一组SQL语句组成的逻辑处理单元。

事务具有以下4个特性,简称为事务ACID属性。

ACID属性 含义
原子性(Atomicity) 事务是一个原子操作单元,其对数据的修改,要么全部成功,要么全部失败。
一致性(Consistent) 在事务开始和完成时,数据都必须保持一致状态。
隔离性(Isolation) 数据库系统提供一定的隔离机制,保证事务在不受外部并发操作影响的 “独立” 环境下运行。
持久性(Durable) 事务完成之后,对于数据的修改是永久的。

并发事务处理带来的问题

问题 含义
丢失更新(Lost Update) 当两个或多个事务选择同一行,最初的事务修改的值,会被后面的事务修改的值覆盖。
脏读(Dirty Reads) 当一个事务正在访问数据,并且对数据进行了修改,而这种修改还没有提交到数据库中,这时,另外一个事务也访问这个数据,然后使用了这个数据。
不可重复读(Non-Repeatable Reads) 一个事务在读取某些数据后的某个时间,再次读取以前读过的数据,却发现和以前读出的数据不一致。
幻读(Phantom Reads) 一个事务按照相同的查询条件重新读取以前查询过的数据,却发现其他事务插入了满足其查询条件的新数据。

事务隔离级别

为了解决上述提到的事务并发问题,数据库提供一定的事务隔离机制来解决这个问题。数据库的事务隔离越严格,并发副作用越小,但付出的代价也就越大,因为事务隔离实质上就是使用事务在一定程度上“串行化” 进行,这显然与“并发” 是矛盾的。

数据库的隔离级别有4个,由低到高依次为Read uncommitted、Read committed、Repeatable read、Serializable,这四个级别可以逐个解决脏写、脏读、不可重复读、幻读这几类问题。

隔离级别 丢失更新 脏读 不可重复读 幻读
Read uncommitted ×
Read committed × ×
Repeatable read(默认) × × ×
Serializable × × × ×

备注 : √ 代表可能出现 , × 代表不会出现 。

Mysql 的数据库的默认隔离级别为 Repeatable read , 查看方式:

show variables like 'tx_isolation';
+---------------+-----------------+
| Variable_name | Value           |
+---------------+-----------------+
| tx_isolation  | REPEATABLE-READ |
+---------------+-----------------+
1 row in set (0.00 sec)

5.3 InnoDB 的行锁模式

InnoDB 实现了以下两种类型的行锁。

  • 共享锁(S):又称为读锁,简称S锁,共享锁就是多个事务对于同一数据可以共享一把锁,都能访问到数据,但是只能读不能修改。
  • 排他锁(X):又称为写锁,简称X锁,排他锁就是不能与其他锁并存,如一个事务获取了一个数据行的排他锁,其他事务就不能再获取该行的其他锁,包括共享锁和排他锁,但是获取排他锁的事务是可以对数据就行读取和修改

对于UPDATE、DELETE和INSERT语句,InnoDB会自动给涉及数据集加排他锁(X);

对于普通SELECT语句,InnoDB不会加任何锁;

可以通过以下语句显示给记录集加共享锁或排他锁 。

共享锁(S):SELECT * FROM table_name WHERE ... LOCK IN SHARE MODE

排他锁(X)SELECT * FROM table_name WHERE ... FOR UPDATE

5.4 案例准备工作

create table test_innodb_lock(
	id int(11),
	name varchar(16),
	sex varchar(1)
)engine = innodb default charset=utf8;

insert into test_innodb_lock values(1,'100','1');
insert into test_innodb_lock values(3,'3','1');
insert into test_innodb_lock values(4,'400','0');
insert into test_innodb_lock values(5,'500','1');
insert into test_innodb_lock values(6,'600','0');
insert into test_innodb_lock values(7,'700','0');
insert into test_innodb_lock values(8,'800','1');
insert into test_innodb_lock values(9,'900','1');
insert into test_innodb_lock values(1,'200','0');

create index idx_test_innodb_lock_id on test_innodb_lock(id);
create index idx_test_innodb_lock_name on test_innodb_lock(name);

5.5 行锁基本演示

客户端1和客户端2:
关闭事务自动提交功能:

mysql> set autocommit=0;
Query OK, 0 rows affected (0.00 sec)

客户端1和客户端2:
查询数据。结果:都正常执行

mysql> select * from test_innodb_lock where id=3;
+------+------+------+
| id   | name | sex  |
+------+------+------+
|    3 | 3    | 1    |
+------+------+------+
1 row in set (0.00 sec)

客户端1:
更新id为3的数据,但是不提交;(已关闭自动提交)

mysql> update test_innodb_lock set name='30' where id=3;
Query OK, 1 row affected (0.00 sec)
Rows matched: 1  Changed: 1  Warnings: 0

客户端2:
更新id为3的数据
在这里插入图片描述
处于阻塞状态。

当客户端1commit提交了之后,客户端2解除阻塞,更新正常进行
在这里插入图片描述
然而,上面我们客户端2把id为3的数据改成了30,但是在客户端中显示的仍然是300
MySQL高级-MySQL锁_第5张图片
因为数据库的隔离级别影响了。即便客户端2把commit提交事务,客户端1这边仍然是300.
只有客户端1再次提交才能看到
MySQL高级-MySQL锁_第6张图片
当我们指定了更新语句,它会对我们这一行数据加上排它锁,当我们提交了之后,才会释放排他锁,另外一个客户端才可以解除阻塞状态。

以上,操作的都是同一行的数据,如果操作不同行的数据

客户端1:
修改id为3的记录

mysql>  update test_innodb_lock set name='300' where id=3;
Query OK, 1 row affected (0.00 sec)
Rows matched: 1  Changed: 1  Warnings: 0

执行成功,没任何问题。锁定第3行数据

客户端2:
修改id为6的记录

mysql> update test_innodb_lock set name='6000' where id=6;
Query OK, 1 row affected (0.00 sec)
Rows matched: 1  Changed: 1  Warnings: 0

执行成功,没任何问题。因为第6行之前没有加锁。

客户端1和客户端2:
同时提交,释放第3行和第6行的锁

5.6 无索引行锁升级为表锁

如果不通过索引条件检索数据,那么InnoDB将对表中的所有记录加锁,实际效果跟表锁一样
查看当前表的索引 : show index from test_innodb_lock ;

mysql> show index from test_innodb_lock;
+------------------+------------+---------------------------+--------------+-------------+-----------+-------------+----------+--------+------+------------+---------+---------------+
| Table            | Non_unique | Key_name                  | Seq_in_index | Column_name | Collation | Cardinality | Sub_part | Packed | Null | Index_type | Comment | Index_comment |
+------------------+------------+---------------------------+--------------+-------------+-----------+-------------+----------+--------+------+------------+---------+---------------+
| test_innodb_lock |          1 | idx_test_innodb_lock_id   |            1 | id          | A         |           8 |     NULL | NULL   | YES  | BTREE      |         |               |
| test_innodb_lock |          1 | idx_test_innodb_lock_name |            1 | name        | A         |           9 |     NULL | NULL   | YES  | BTREE      |         |               |
+------------------+------------+---------------------------+--------------+-------------+-----------+-------------+----------+--------+------+------------+---------+---------------+
2 rows in set (0.00 sec)

这张表有两个索引,id和name,都是单列索引。

客户端1:
对name为900的记录中的sex进行修改(注意:name没加单引号)

mysql> update test_innodb_lock set sex='1' where name=900;
Query OK, 0 rows affected (0.00 sec)
Rows matched: 1  Changed: 0  Warnings: 0

客户端2:
对id为3的记录中的name字段进行修改
在这里插入图片描述
此时阻塞了?
我们在客户端1中操作的是id为9的记录,而在客户端2中操作的是id为3的记录。而innodb中默认支持的是行锁。
原因是因为当前行锁失效,升级为了表锁。
当我们客户端1commit之后,
在这里插入图片描述
此时客户端2就可以正常执行了。
由于 执行更新时 , name字段本来为varchar类型, 我们是作为数组类型使用,存在类型转换,索引失效,最终行锁变为表锁 ;。关于索引失效的具体情况可以参看:索引的使用及优化

5.7 间隙锁危害

当我们用范围条件,而不是使用相等条件检索数据,并请求共享或排他锁时,InnoDB会给符合条件的已有数据进行加锁; 对于键值在条件范围内但并不存在的记录,叫做 “间隙(GAP)” , InnoDB也会对这个 “间隙” 加锁,这种锁机制就是所谓的 间隙锁(Next-Key锁) 。
说明:比如我们要查找id<10的记录,此时数据库中,id的值分别为1,2,3,4,6,9,此时的5,7,8就都是间隙。
此时对id<10的记录加锁,不仅会对已存在的数据加锁,此时对间隙也会加锁。

客户端1:
修改id<4的值

mysql> select * from test_innodb_lock;
+------+------+------+
| id   | name | sex  |
+------+------+------+
|    1 | 100  | 1    |
|    3 | 300  | 1    |
|    4 | 400  | 0    |
|    5 | 500  | 1    |
|    6 | 6000 | 0    |
|    7 | 700  | 0    |
|    8 | 800  | 1    |
|    9 | 900  | 1    |
|    1 | 200  | 0    |
+------+------+------+
9 rows in set (0.00 sec)

mysql> update test_innodb_lock set sex='0' where id<4;
Query OK, 2 rows affected (0.00 sec)
Rows matched: 3  Changed: 2  Warnings: 0

此时2是间隙,innodb也会对2加间隙锁。

客户端2:
插入id为2的记录
在这里插入图片描述
被阻塞。
客户端1 提交之后,客户端2正常执行。

5.8 InnoDB 行锁争用情况

show  status like 'innodb_row_lock%';
+-------------------------------+--------+
| Variable_name                 | Value  |
+-------------------------------+--------+
| Innodb_row_lock_current_waits | 0      |
| Innodb_row_lock_time          | 203445 |
| Innodb_row_lock_time_avg      | 40689  |
| Innodb_row_lock_time_max      | 51111  |
| Innodb_row_lock_waits         | 5      |
+-------------------------------+--------+
5 rows in set (0.00 sec)

Innodb_row_lock_current_waits: 当前正在等待锁定的数量

Innodb_row_lock_time: 从系统启动到现在锁定总时间长度

Innodb_row_lock_time_avg:每次等待所花平均时长

Innodb_row_lock_time_max:从系统启动到现在等待最长的一次所花的时间

Innodb_row_lock_waits: 系统启动后到现在总共等待的次数

当等待的次数很高,而且每次等待的时长也不小的时候,我们就需要分析系统中为什么会有如此多的等待,然后根据分析结果着手制定优化计划。

5.9 总结

InnoDB存储引擎由于实现了行级锁定,虽然在锁定机制的实现方面带来了性能损耗可能比表锁会更高一些,但是在整体并发处理能力方面要远远由于MyISAM的表锁的。当系统并发量较高的时候,InnoDB的整体性能和MyISAM相比就会有比较明显的优势。

但是,InnoDB的行级锁同样也有其脆弱的一面,当我们使用不当的时候,可能会让InnoDB的整体性能表现不仅不能比MyISAM高,甚至可能会更差。

优化建议:

  • 尽可能让所有数据检索都能通过索引来完成,避免无索引行锁升级为表锁。
  • 合理设计索引,尽量缩小锁的范围
  • 尽可能减少索引条件,及索引范围,避免间隙锁
  • 尽量控制事务大小,减少锁定资源量和时间长度
  • 尽可使用低级别事务隔离(但是需要业务层面满足需求)

你可能感兴趣的:(MySQL,数据库,mysql,数据库)